1 |
KUSHWAH R , TAPASWI S , KUMAR A . A detailed study on internet connectivity schemes for mobile Ad hoc network[J]. Wireless Personal Communications, 2019, 104 (4): 1433- 1471.
doi: 10.1007/s11277-018-6093-7
|
2 |
SRA P , CHAND S . QoS in mobile ad hoc networks[J]. Wireless Personal Communications, 2019, 105 (4): 1599- 1616.
doi: 10.1007/s11277-019-06162-y
|
3 |
SU Y , FAN R , FU X , et al. DQELR: an adaptive deep Q-network-based energy-and latency-aware routing protocol design for underwater acoustic sensor networks[J]. IEEE Access, 2019, 7, 9091- 9104.
doi: 10.1109/ACCESS.2019.2891590
|
4 |
MAMMERI Z . Reinforcement learning based routing in networks: review and classification of approaches[J]. IEEE Access, 2019, 7, 55916- 55950.
doi: 10.1109/ACCESS.2019.2913776
|
5 |
SHILOVA Y, KAVALEROV M, BEZUKLADNIKOV I I. Full echo Q-routing with adaptive learning rates: a reinforcement learning approach to network routing[C]//Proc.of the IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference, 2016: 341-344.
|
6 |
KAVALEROV M, SHILOVA Y, LIKHACHEVA Y. Adaptive Q-routing with random echo and route memory[C]//Proc.of the Conference of Open Innovations Association, 2017: 138-145.
|
7 |
KAVALEROV M V, SHILOVA Y A, BEZUKLADNIKOV I I. Preventing instability in full echo Q-routing with adaptive learning rates[C]//Proc.of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2017: 155-159.
|
8 |
KAVALEROV M, LIKHACHEVA Y, SHILOVA Y. A reinforcement learning approach to network routing based on adaptive learning rates and route memory[C]//Proc.of the SoutheastCon, 2017: 1-6.
|
9 |
SHILOVA Y A, BEZUKLADNIKOV I I. Influence of the battery life parameter on the Q-routing algorithm results[C]//Proc.of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2017: 213-217.
|
10 |
LIU Y , LU D , ZHANG G , et al. Q-learning based content placement method for dynamic cloud content delivery networks[J]. IEEE Access, 2019, 7, 66384- 66394.
doi: 10.1109/ACCESS.2019.2917564
|
11 |
WANG F , FENG R J , CHEN H Y . Dynamic routing algorithm with Q-learning for internet of things with delayed estimator[J]. IOP Conference Series: Earth and Environmental Science, 2019, 234 (1): 012048.
|
12 |
HE X , JIANG H , SONG Y , et al. Routing selection with reinforcement learning for energy harvesting multi-hop CRN[J]. IEEE Access, 2019, 7, 54435- 54448.
doi: 10.1109/ACCESS.2019.2912996
|
13 |
MAYADUNNA H, SILVA S L D, WEDAGE I, et al. Improving trusted routing by identifying malicious nodes in a MANET using reinforcement learning[C]//Proc.of the 11th International Conference on Advances in ICT for Emerging Regions, 2017: 1-8.
|
14 |
SARKAR S , DATTA R . Mobility-aware route selection technique for mobile ad hoc networks[J]. IET Wireless Sensor Systems, 2017, 7 (3): 55- 64.
doi: 10.1049/iet-wss.2016.0058
|
15 |
YANG X , TAN J . Design and implementation of networked control system based on ARM and Zigbee[J]. IOP Conference Series: Earth and Environmental Science, 2019, 252 (5): 052139- 052144.
|
16 |
胡君, 叶俊杰. 基于链路时间预测的移动Ad Hoc网路由[J]. 传感技术学报, 2019, 32 (6): 945- 949.
doi: 10.3969/j.issn.1004-1699.2019.06.021
|
|
HU J , YE J J . Routing of mobile ad hoc networks based on link time prediction[J]. Chinese Journal of Sensors and Actuators, 2019, 32 (6): 945- 949.
doi: 10.3969/j.issn.1004-1699.2019.06.021
|
17 |
胡博, 陈侃松, 顾豪爽, 等. 基于网络拓扑变化的改进型按需路由协议[J]. 小型微型计算机系统, 2019, 40 (3): 589- 593.
doi: 10.3969/j.issn.1000-1220.2019.03.023
|
|
HU B , CHEN K S , GU H S , et al. Improved on-demand routing protocol based on network topology change[J]. Journal of Chinese Computer Systems, 2019, 40 (3): 589- 593.
doi: 10.3969/j.issn.1000-1220.2019.03.023
|