1 |
NACHI G. Kalman filtering in the presence of state space equality constraints[C]//Proc.of the IEEE Chinese Control Conference, 2007: 107-113.
|
2 |
RUOTSALAINEN L , KIRKKO-JAAKKOLA M , RANTANEN J , et al. Error modeling for multi-sensor measurements in infrastructure-free indoor navigation[J]. Sensors, 2018, 18 (2): 590- 590.
doi: 10.3390/s18020590
|
3 |
DENG Z , SUN M , WANG B , et al. Analysis and calibration of the no-northogonal angle in dual-axis rotational INS[J]. IEEE Trans.on Industrial Electronics, 2017, 64 (6): 4762- 4771.
doi: 10.1109/TIE.2017.2652342
|
4 |
YANG B, WANG Y G, CHAI Y. High accuracy and reliability integrated navigation method for long-endurance aircraft[C]//Proc.of the 9th International Conference on Hybrid Intelligent Systems, 2009: 442-445.
|
5 |
HERRERA E P, QUIRÓS R, KAUFMANN H. Analysis of a Kalman approach for a pedestrian positioning system in indoor environments[C]//Proc.of the European Conference on Parallel Processing, 2007: 931-940.
|
6 |
ABDULRAHIM K , SEMAN K , OTHMAN M , et al. On magnetometer heading updates for inertial pedestrian navigation system[J]. Gyroscopy and Navigation, 2014, 5 (3): 145- 152.
doi: 10.1134/S207510871403002X
|
7 |
ZHANG X X , ZHANG R , GUO M F , et al. Online three-axis magnetometer calibration for a pedestrian navigation system using a foot-mounted inertial navigation system[J]. Journal of Tsinghua University (Science and Technology), 2016, 56 (2): 211- 217.
|
8 |
ZHENG L , ZHOU W , TANG W , et al. A 3D indoor positioning system based on low-cost MEMS sensors[J]. Simulation Modelling Practice and Theory, 2016, 65, 45- 56.
doi: 10.1016/j.simpat.2016.01.003
|
9 |
MARRON J J , LABRADOR M A , MENENDEZ-VALLE A , et al. Multi-sensor system for pedestrian tracking and activity recognition in indoor environments[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2016, 23 (1): 3- 23.
|
10 |
ABREU J M M , CERES R , FREIRE T . Ultrasonic ranging[J]. Sensor Review, 1992, 12 (1): 17- 21.
|
11 |
CHU B . Position compensation algorithm for omnidirectional mobile robots and its experimental evaluation[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18 (12): 1755- 1762.
doi: 10.1007/s12541-017-0204-3
|
12 |
赵广涛, 程荫杭. 基于超声波传感器的测距系统设计[J]. 微计算机信息, 2006, 22 (1): 129- 130.
doi: 10.3969/j.issn.1008-0570.2006.01.050
|
|
ZHAO G T , CHENG Y H . Design of ranging system based on ultrasonic sensor[J]. Microcomputer information, 2006, 22 (1): 129- 130.
doi: 10.3969/j.issn.1008-0570.2006.01.050
|
13 |
MA L, FAN Y, XU Y, et al. Pedestrian dead reckoning trajectory matching method for radio map crowd sourcing building in WiFi indoor positioning system[C]//Proc.of the IEEE International Conference on Communications (ICC), 2017: 1-6.
|
14 |
周先赞.基于超声波的室内导航定位方法研究[D].南昌:南昌大学, 2016: 42-55.
|
|
ZHOU X Z. Research on indoor navigation and positioning method based on ultrasonic wave[D]. Nanchang: Nanchang University, 2016: 42-55.
|
15 |
ZHAO Y , SHI W , AI X . Fusion algorithm in indoor integrated position system for pedestrian dead reckoning/ultrasonic[J]. Journal of Central South University (Science and Technology), 2016, 47 (5): 1587- 1598.
|
16 |
GIRARD G , CÔTÉ S , ZLATANOVA S , et al. Indoor pedestrian navigation using foot-mounted IMU and portable ultrasound range sensors[J]. Sensors, 2011, 11 (8): 7606- 7624.
doi: 10.3390/s110807606
|
17 |
ZHANG H, SUN W, JI H, et al. LIU: localization via fusion of IMU and ultrasonic positioning[C]//Proc.of the 3rd International Conference on Big Data Computing and Communications (BIGCOM), 2017: 272-276.
|
18 |
郑涵旭,张波.基于FPGA的超声波辅助IMU的室内定位系统设计[C]//第十二届全国信号和智能信息处理与应用学术会议, 2018: 135-139.
|
|
ZHENG H X, ZHANG B. Design of indoor positioning system of ultrasonic assisted IMU based on FPGA[C]//Proc.of the 12th National Academic Conference on Signal and Intelligent Information Processing and Application, 2018: 135-139.
|
19 |
周路旸, 胡一恭, 武元新. 带足距辅助的双惯导行人导航硬件系统设计[J]. 电子技术应用, 2018, 44 (7): 95- 99.
|
|
ZHOU L Y , HU Y G , WU Y X . Design of pedestrian navigation hardware system with double inertial navigation assisted by full range[J]. Application of Electronic Technology, 2018, 44 (7): 95- 99.
|
20 |
WANG Q, KUANG C, NOURELDIN A, et al. Research on the improved data processing method for foot-mounted inertial pedestrian positioning system[C]//Proc.of the International Conference on Communications, Signal Processing and their Applications (ICCSPA), 2019: 1-6.
|
21 |
工采网络科技有限公司.超声波人体检测传感器工作原理及应用[EB/OL].[2019-09-10]. https://wenku.baidu.com/view/29c56332b94ae45c3b3567ec102de2bd9705de61.html?from=search.
|
|
Gong cai network technology compay. Ultrasonic human body detection sensor working principle and application[EB/OL].[2019-09-10].https://wenku.baidu.com/view/29c56332b94ae45c3b3567ec102de2bd9705de61.html?from=search.
|
22 |
王晓峰. STM32F429开发板用户手册[EB/OL].[2019-09-10].https://wenku.baidu.com/view/277e6c52b4daa58da0114adf.html.
|
|
WANG X F. STM32F429 Development user manual[EB/OL].[2019-09-10].https://wenku.baidu.com/view/277e6c52b4daa58da0114adf.html.
|
23 |
WANG Y, CHERNYSHOFF A, SHKEL A M. Error analysis of ZUPT-aided pedestrian inertial navigation[C]//Proc.of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018: 206-212.
|
24 |
LI Z Y , WANG Y , ZHOU B , et al. Detectability and observability of discrete-time stochastic systems and their applications[J]. Automatica, 2009, 45 (5): 1340- 1346.
doi: 10.1016/j.automatica.2009.01.014
|
25 |
MARTINELLI A . Nonlinear unknown input observability: extension of the observability rank condition[J]. IEEE Trans.on Automatic Control, 2018, 64 (1): 222- 237.
|
26 |
MARTIN H , GROVES P , NEWMAN M . The limits of in-run calibration of MEMS inertial sensors and sensor arrays[J]. Navigation, 2016, 63 (2): 127- 143.
doi: 10.1002/navi.135
|
27 |
张向刚, 唐海, 付常君, 等. 一种基于隐马尔科夫模型的步态识别算法[J]. 计算机科学, 2016, 43 (7): 285- 289.
|
|
ZHANG X G , TANG H , FU C J , et al. An algorithm for gait recognition based on hidden markov model[J]. Computer Science, 2016, 43 (7): 285- 289.
|
28 |
LEMBER J , GASBARRA D , KOLOYDENKO A , et al. Estimation of Viterbi path in Bayesian hidden Markov models[J]. METRON, 2018, 8, 1- 33.
|
29 |
LIU Y Y, ZHAO F, SHAO W H, et al. An hidden Markov model based complex walking pattern recognition algorithm[C]//Proc.of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), 2016: 223-229.
|
30 |
SIMON D , CHIA T L . Kalman filtering with state equality constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (1): 128- 136.
doi: 10.1109/7.993234
|
31 |
YANG Y , ZHANG X , XU J . Adaptively constrained Kalman filtering for navigation applications[J]. Empire Survey Review, 2013, 43 (322): 370- 381.
|
32 |
LI D , HONG H , JIANG X . Dynamics modeling, control system design and simulation of manipulator based on lagrange equation[M]. Mechanism and Machine Science. Singapore: Springer Press, 2016: 1129- 1141.
|
33 |
WANG Q Y , GUO Z , SUN Z G , et al. Research on the forward and reverse calculation based on the adaptive zero-velocity interval adjustment for the foot-mounted inertial pedestrian-positioning system[J]. Sensors, 2018, 18 (5): 1642- 1657.
doi: 10.3390/s18051642
|