1 |
GUO S, LIU C, GUO Z, et al. Trajectory prediction for ocean vessels base on K-order multivariate Markov chain[C]//Proc.of the International Conference on Wireless Algorithms, Systems and Applications, 2018, 140-150.
|
2 |
乔少杰, 金琨, 韩楠, 等. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26 (5): 1048- 1063.
|
|
QIAO S J , JIN K , HAN N , et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26 (5): 1048- 1063.
|
3 |
HEXEBERG S, FLATEN A L, BREKKE E F. AIS-based vessel trajectory prediction[C]//Proc.of the 20th International Conference on Information Fusion, 2017: 1-8.
|
4 |
PERERA L P , OLIVEIRA P , SOARES C G . Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction[J]. IEEE Trans.on Intelligent Transportation Systems, 2012, 13 (3): 1188- 1200.
doi: 10.1109/TITS.2012.2187282
|
5 |
PERERA L P, SOARES C G. Ocean vessel trajectory estimation and prediction based on extended kalman filter[C]//Proc.of the 2nd International Conference on Adaptive and Self-Adaptive Systems and Applications, 2010: 14-20.
|
6 |
彭秀艳, 门志国, 刘长德. 基于Kalman滤波算法的Volterra级数核估计及其应用[J]. 系统工程与电子技术, 2010, 32 (11): 2431- 2435.
|
|
PENG X Y , MEN Z G , LIU C D . Volterra series kernel estimation based on Kalman filtering algorithm and its application[J]. Systems Engineering and Electronics Technology, 2010, 32 (11): 2431- 2435.
|
7 |
NGUYEN D D, LE V C, ALI M I. Vessel trajectory prediction using sequence-to-sequence models over spatial grid[C]//Proc.of the 12th ACM International Conference on Distributed and Event-based Systems, 2018: 258-261.
|
8 |
ZHU F, MARITIME D. Mining ship spatial trajectory patterns from AIS database for maritime surveillance[C]//Proc.of the 2nd International Conference on Emergency Management & Management Sciences, 2011: 772-775.
|
9 |
DOBRKOVIC A , IACOB M E , HILLEGERSBERG J V , et al. Towards an approach for long term AIS-based prediction of vessel arrival times[M]. Logistics and Supply Chain Innovation. Switzerland: Springer, 2016: 281- 294.
|
10 |
WIJAYA W M, NAKAMURA Y. Predicting ship behavior navigating through heavily trafficked fairways by analyzing AIS data on apache Hbase[C]//Proc.of the 1st International Symposium on Computing and Networking, 2014: 220-226.
|
11 |
任文娟, 周志鑫, 吕守业, 等. 基于AIS信息的舰船位置标校方法[J]. 系统工程与电子技术, 2016, 38 (10): 2381- 2388.
doi: 10.3969/j.issn.1001-506X.2016.10.23
|
|
REN W J , ZHOU Z X , LYU S Y , et al. Ship position calibration method based on AIS information[J]. Systems Engineering and electronics, 2016, 38 (10): 2381- 2388.
doi: 10.3969/j.issn.1001-506X.2016.10.23
|
12 |
ZISSIS D , XIDIAS E K , LEKKAS D . Real-time vessel behavior prediction[J]. Evolving Systems, 2016, 7 (1): 29- 40.
doi: 10.1007/s12530-015-9133-5
|
13 |
LEI P R , SU J , PENG W C , et al. A framework of moving behavior modeling in the maritime surveillance[J]. Journal of Chung Cheng Institute of Technology, 2011, 40 (2): 33- 42.
|
14 |
PALLOTTA G , VESPE M , BRYAN K . Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15 (6): 2218- 2245.
|
15 |
VESPE M, VISENTINI I, BRYAN K, et al. Unsupervised learning of maritime traffic patterns for anomaly detection[C]//Proc.of the 9th Data Fusion & Target Tracking Conference, 2012: 110-114.
|
16 |
MAZZARELLA F , VESPE M , SANTAMARIA C . SAR ship detection and self-reporting data fusion based on traffic know-ledge[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1685- 1689.
doi: 10.1109/LGRS.2015.2419371
|
17 |
MAZZARELLA F, ARGUEDAS V F, VESPE M. Knowledge-based vessel position prediction using historical AIS data[C]//Proc.of the Sensor Data Fusion: Trends, Solutions, Applications, 2015: 1-6.
|
18 |
权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45 (S2): 136- 141.
|
|
QUAN B , YANG B C , HU K Q , et al. Ship track prediction model based on LSTM[J]. Computer Science, 2018, 45 (S2): 136- 141.
|
19 |
VALSAMIS A , TSERPES K , ZISSIS D , et al. Employing traditional machine learning algorithms for big data streams analysis: the case of object trajectory prediction[J]. Journal of Systems and Software, 2017, 127, 249- 257.
doi: 10.1016/j.jss.2016.06.016
|
20 |
钟颖, 汪秉文. 基于遗传算法的BP神经网络时间序列预测模型[J]. 系统工程与电子技术, 2002, 24 (4): 9- 11.
doi: 10.3321/j.issn:1001-506X.2002.04.003
|
|
ZHONG Y , WANG B W . BP neural network time series prediction model based on genetic algorithm[J]. Systems Engineering and electronics, 2002, 24 (4): 9- 11.
doi: 10.3321/j.issn:1001-506X.2002.04.003
|
21 |
BESSE P , GUILLOUET B , LOUBES J M , et al. Review and perspective for distance based trajectory clustering[J]. Computer Science, 2015, 47 (2): 169- 179.
|
22 |
CHEN J, WANG R, LIU L, et al. Clustering of trajectories based on Hausdorff distance[C]//Proc.of the International Conference on Electronics, Communications and Control, 2011: 1940-1944.
|
23 |
BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE Trans.on Neural Networks, 1994, 5 (2): 157- 166.
|
24 |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv Preprint arXiv: 1207.0580, 2012.
|
25 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc.of the Advances in Neural Information Processing Systems, 2012: 1097-1105.
|
26 |
HEATON J . Programming neural networks with encog3 in C#[M]. 2nd ed Louis: Heaton Research, 2011.
|
27 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proc.of the 3rd International Conference for Learning Representations, arXiv: 1412.6980, 2014.
|
28 |
CHO K , VAN MERRIENBOER B , BAHDANAU D , et al. On the properties of neural machine translation: encoder-decoder approaches[J]. Computer Science, 2014.
|