系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (4): 826-835.doi: 10.3969/j.issn.1001-506X.2020.04.13
收稿日期:
2019-07-05
出版日期:
2020-03-28
发布日期:
2020-03-28
作者简介:
郧奇佳(1990-),男,博士研究生,主要研究方向为飞机总体设计、激光武器、飞机作战效能评估。E-mail: 基金资助:
Qijia YUN1(), Bifeng SONG1(
), Yang PEI1(
), Guankun WANG2(
)
Received:
2019-07-05
Online:
2020-03-28
Published:
2020-03-28
Supported by:
摘要:
为了研究机载激光武器的安装对轰炸机作战效能的影响,提出了基于功能组件的模块化作战仿真框架。采用基于Agent的建模与仿真方法,基于感知、通信、决策、运动、执行的功能对Agent模块进行划分,提出了基于功能组件的模块化作战仿真体系。在此模型框架下,设计机载激光武器系统、雷达系统、导弹等模块的状态机,并建立考虑相对位置变化的详细数学模型,以分析在战斗每一时刻影响作战效能的指标参数变化情况。最后通过对典型突防作战算例的仿真,研究了在动态作战过程中激光武器的发射镜直径和发射功率与目标表面光斑大小和能量密度随相对距离的变化关系,分析了在载机为高速小雷达散射截面积(radar cross section, RCS)和低速大RCS两种情况下,机载激光武器的发射镜直径和发射功率对轰炸机突防效能的影响。分析结果表明,提高机载激光武器的发射功率和发射镜直径对作战效能提升显著,尤其是在载机为低速大RCS的情况下对效能的提升非常显著。
中图分类号:
郧奇佳, 宋笔锋, 裴扬, 王冠坤. 基于Agent建模的机载激光武器系统作战效能影响因素分析[J]. 系统工程与电子技术, 2020, 42(4): 826-835.
Qijia YUN, Bifeng SONG, Yang PEI, Guankun WANG. Analysis of the factors influencing the combat effectiveness of airborne laser weapon system based on Agent modeling[J]. Systems Engineering and Electronics, 2020, 42(4): 826-835.
表1
仿真参数"
Agent | 参数 | 数值 |
飞机 | 突防速度Maa/Ma | 1.5 |
突防高度Ha/km | 10 | |
RCS σt/m2 | 0.1 | |
探测传感器焦距f/mm | 20 | |
粗跟踪焦距f/mm | 100 | |
精跟踪焦距f/mm | 400 | |
焦平面阵列分辨率rFPA/μm | 1 | |
光束质量因子β | 2 | |
激光波长λ/μm | 1.06 | |
激光聚焦距离R/km | 2~30 | |
环境 | 大气能见度VM/km | 20 |
大气密度kg/m3 | 1.29 | |
大气比热容cp/(J/kg·K) | 1 005 | |
大气折射率随温度变化率nT | 10-6 | |
气溶胶类型常数K | 4.543 | |
舰船 | 航行速度/节 | 20 |
雷达特征探测RCS σ0/m2 | 5 | |
雷达特征探测概率Pd0 | 0.9 | |
雷达特征探测距离R0/km | 100 | |
雷达特征虚警概率PFA0 | 10-6 | |
恒虚警处理参考单元数N | 16 | |
雷达搜索循环时间Ts/s | 5 | |
雷达跟踪循环时间Tt/s | 0.1 | |
导弹 | 导弹尺寸/m | 0.5×0.5×2 |
飞行速度Mam/Ma | 3 | |
导引头作用距离Rd/km | 10 | |
导引头材料对激光的吸收率 | 0.7 | |
毁伤阈值Ed/(kJ/cm2) | 1 |
1 | HECHT J . Half a century of laser weapons[J]. Optics and Photonics News, 2009, 20 (2): 14- 21. |
2 |
COOK J R . High-energy laser weapons since the early 1960s[J]. Optical Engineering, 2012, 52 (2): 021007.
doi: 10.1117/1.OE.52.2.021007 |
3 |
WACHS J J , WILSON G T . United States army tactical high-energy laser program[J]. Optical Engineering, 2012, 52 (2): 021009.
doi: 10.1117/1.OE.52.2.021009 |
4 | ELLIS J D.Directed-energy weapons: promise and prospects[R]. Washingtow, DC: Center for a New American Security, 2015. |
5 | ZOHURI B . Introduction to directed energy weapon[M]. Directed-energy beam weapons.Cham: Springer, 2019: 1- 54. |
6 |
KIEL D H . Is this the time for a high-energy laser weapon program?[J]. Optical Engineering, 2012, 52 (2): 021008.
doi: 10.1117/1.OE.52.2.021008 |
7 | TAN Z K, KE X Z.The variance of angle-of-arrival fluctuation of partially coherent Gaussian-Schell model beam propagations in slant atmospheric turbulence[C]//Proc.of the Fiber Optic Sensing & Optical Communications, 2017, 10464. |
8 |
LUSHNIKOV P M , VLADIMIROVA N . Toward defeating diffraction and randomness for laser beam propagation in turbulent atmosphere[J]. JETP Letters, 2018, 108 (9): 571- 576.
doi: 10.1134/S0021364018210026 |
9 | 张鹏飞, 乔春红, 冯晓星, 等. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论[J]. 物理学报, 2017, 66 (24): 127- 134. |
ZHANG P F , QIAO C H , FENG X X , et al. Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere[J]. Acta Physica Sinica, 2017, 66 (24): 127- 134. | |
10 |
WANG L , LIN W , WU C , et al. The steady-state thermal blooming of the high-power laser propagation in the rain[J]. Journal of Electromagnetic Waves and Applications, 2016, 30 (14): 1877- 1884.
doi: 10.1080/09205071.2016.1219276 |
11 |
DING Z L , LI X Q , CAO J Y , et al. Thermal blooming effect of Hermite-Gaussian beams propagating through the atmosphere[J]. Journal of the Optical Society of America A, 2019, 36 (7): 1152- 1160.
doi: 10.1364/JOSAA.36.001152 |
12 |
LIU Y T . Adaptive control in adaptive optics for directed-energy systems[J]. Optical Engineering, 2007, 46 (4): 046601.
doi: 10.1117/1.2724839 |
13 |
TESCH J , GIBSON S . Optimal and adaptive control of aero-optical wavefronts for adaptive optics[J]. Journal of the Optical Society of America A, 2012, 29 (8): 1625- 1638.
doi: 10.1364/JOSAA.29.001625 |
14 | OPPENHEIMER M W , PACHTER M . Adaptive optics for airborne platforms-part 2:controller design[J]. Optics and Laser Technology, 2002, 34 (2): 159- 176. |
15 |
ZHAO H C , WANG X L , ZHOU P , et al. Experimental explorations of the high-order Gaussian mode transformation based on blind-optimization adaptive optics[J]. Optics Communications, 2011, 284 (19): 4654- 4657.
doi: 10.1016/j.optcom.2011.04.055 |
16 | BAUMANN S M, KEENAN C, MARCINIAK M A, et al.Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing[C]//Proc.of the SPIE-the International Society for Optical Engineering, 2014. |
17 |
BOLEY C D , CUTTER K P , FOCHS S N , et al. Interaction of a high-power laser beam with metal sheets[J]. Journal of Applied Physics, 2010, 107 (4): 043106.
doi: 10.1063/1.3284204 |
18 |
MA C , MA Z , GAO L H , et al. Ablation behavior of glass fiber reinforced poly-benzoxazine composites irradiated by high energy continuous-wave laser[J]. Materials Research Express, 2019, 6 (8): 085315.
doi: 10.1088/2053-1591/ab1ef1 |
19 |
CANDAN C , SEYMEN A A , KARATUTLU A , et al. Performance evaluation of fiber-based ballistic composites against laser threats[J]. Optics and Lasers in Engineering, 2019, 121, 54- 60.
doi: 10.1016/j.optlaseng.2019.03.016 |
20 |
LACROIX F , ALLHEILY V , DIENER K , et al. Thermomechanical behavior of aeronautic structural carbon epoxy composite submitted to a laser irradiation[J]. Composite Structures, 2016, 143, 220- 229.
doi: 10.1016/j.compstruct.2016.02.009 |
21 | GUO F, ZHU R Z, WANG A.Damage effect on CMOS detector irradiated by single-pulse laser[C]//Proc.of the SPIE International Society for Optical Engineering, 2013, 8905: 610-614. |
22 | CHEN Q R, ZHOU X F, HAO D L, et al.Nanosecond-laser induced crosstalk of CMOS image sensor[C]//Proc.of the 4th Seminar on Novel Optoelectronic Detection Technology and Application, 2018. |
23 | LU Y, FENG Y S, LING Y S, et al.The mechanism of laser disturbing infrared detector and its intelligent protection[C]//Proc.of the 5th International Symposium on Photoelectronic Detection and Imaging, 2013. |
24 | BURLEY J L.Comparision of high energy laser expected dwell times and probability of kill for mission planning scenarios in actual and standard atmospheres, ADA557011[R]. Ohio: Air Force Institute of Technology, 2012. |
25 | STUPL J , NEUNECK G . Assessment of long range laser weapon engagements:the case of the airborne laser[J]. Science & Global Security, 2010, 18 (1): 1- 60. |
26 | 高小翔.机载激光武器系统关键技术及仿真研究[D].西安:西北工业大学, 2013. |
GAO X X.Airborne laser weapon system key techniques simulation research[D]. Xi'an: Northwestern Polytechnical University, 2013. | |
27 |
王佩, 吕梅柏, 李言俊, 等. 基于HLA的机载激光武器仿真系统设计[J]. 西北工业大学学报, 2011, 29 (2): 198- 204.
doi: 10.3969/j.issn.1000-2758.2011.02.009 |
WANG P , LYU M B , LI Y J , et al. An airborne laser weapon simulation system based on HLA[J]. Journal of Northwestern Polytechnical University, 2011, 29 (2): 198- 204.
doi: 10.3969/j.issn.1000-2758.2011.02.009 |
|
28 | GUNDLACH J . Designing unmanned aircraft systems:a comprehensive approach[M]. Reston, Virginia: AIAA, 2012: 531- 533. |
29 | 张明友, 汪学刚. 雷达系统[M]. 北京: 电子工业出版社, 2013: 112- 114. |
ZHANG M Y , WANG X G . Radar systems[M]. Beijing: Publishing House of Electronics Industry, 2013: 112- 114. | |
30 |
牛晓川, 陈少华, 吴宗一, 等. 协同制导条件下空空导弹中末制导交接班能力[J]. 弹箭与制导学报, 2011, 31 (4): 41- 44.
doi: 10.3969/j.issn.1673-9728.2011.04.013 |
NIU X C , CHEN S H , WU Z Y , et al. Investigation of air-to-air missile's midcourse and terminal guidance handing-off based on cooperative guidance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31 (4): 41- 44.
doi: 10.3969/j.issn.1673-9728.2011.04.013 |
|
31 | 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005. |
FANG Z P , CHEN W C , ZHANG S G . Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005. | |
32 |
欧阳中辉, 刘家祺, 张龙杰, 等. 基于矢量运算的三维真比例导引弹道仿真[J]. 弹箭与制导学报, 2013, 33 (1): 53- 56.
doi: 10.3969/j.issn.1673-9728.2013.01.013 |
OUYANG Z H , LIU J Q , ZHANG L J , et al. The simulation of three-dimensional TPN trajectory based on vector operation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (1): 53- 56.
doi: 10.3969/j.issn.1673-9728.2013.01.013 |
|
33 | 王炜强, 贾晓洪, 韩宇萌, 等. 定向干扰激光的红外成像建模与仿真[J]. 红外与激光工程, 2016, 45 (6): 51- 56. |
WANG W Q , JIA X H , HAN Y M , et al. Infrared imaging modeling and simulation of DIRCM laser[J]. Infrared and Laser Engineering, 2016, 45 (6): 51- 56. | |
34 | PUENT D.Integration of adaptive optics into high energy laser modeling and simulation[D]. Monterey, California: Naval Postgraduate School, 2017. |
35 |
柯熙政, 郭新龙. 大气斜程传输中高阶贝塞尔高斯光束轨道角动量的研究[J]. 红外与激光工程, 2015, 44 (12): 3744- 3749.
doi: 10.3969/j.issn.1007-2276.2015.12.042 |
KE X Z , GUO X L . Orbital angular momentum research of high order Bessel Gaussian beam in a slant atmosphere turbulence[J]. Infrared and Laser Engineering, 2015, 44 (12): 3744- 3749.
doi: 10.3969/j.issn.1007-2276.2015.12.042 |
|
36 | 蒲桃园.高能激光大气传输热晕效应分析[D].成都:电子科技大学, 2010. |
PU T Y.Analysis of high energy laser thermal blooming effect[D]. Chengdu: University of Electronic Science and Technology, 2010. | |
37 |
刘淑英. YAG连续激光对玻璃钢材料的破坏效应研究[J]. 红外与激光工程, 1999, 28 (6): 52- 57.
doi: 10.3969/j.issn.1007-2276.1999.06.011 |
LIU S Y . Research of destructive effect produced by YAG continuous laser acting on fiberglass material[J]. Infrared and Laser Engineering, 1999, 28 (6): 52- 57.
doi: 10.3969/j.issn.1007-2276.1999.06.011 |
|
38 | BARTON D K . Radar system analysis and modeling[M]. Norwood: Artech House, 2005: 387- 388. |
[1] | 游雅倩, 姜江, 孙建彬, 赵丹玲, 杨克巍. 基于证据网络的装备体系贡献率评估方法研究[J]. 系统工程与电子技术, 2019, 41(8): 1780-1788. |
[2] | 罗承昆, 陈云翔, 项华春, 王莉莉. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794. |
[3] | 杨克巍, 杨志伟, 谭跃进, 赵青松. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321. |
[4] | 徐洋, 伍友利, 黄晨, 刘同鑫. 基于改进两步裁定法的内埋空空导弹作战效能评估[J]. 系统工程与电子技术, 2019, 41(12): 2763-2771. |
[5] | 张睿文, 宋笔锋, 裴扬, 石帅. 基于ABMS的飞机拦截作战效能评估方法[J]. 系统工程与电子技术, 2018, 40(2): 322-329. |
[6] | 王枭, 刘雅奇, 齐锋. 基于Apriori算法的作战仿真探索实验控制[J]. 系统工程与电子技术, 2017, 39(4): 917-923. |
[7] | 蒲玮, 李雄. 基于Agent行动图的作战建模方法[J]. 系统工程与电子技术, 2017, 39(4): 795-805. |
[8] | 赵丹玲, 谭跃进, 李际超, 夏博远, 豆亚杰, 姬升平. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247. |
[9] | 房坚, 王钺, 袁坚. 基于集合距离的信息优势度量方法[J]. 系统工程与电子技术, 2017, 39(1): 114-119. |
[10] | 蒲玮, 李雄. 基于EA流程图的指挥流程信息可视化方法[J]. 系统工程与电子技术, 2017, 39(1): 215-222. |
[11] | 倪鹏1,2, 刘进忙1, 付强1, 高嘉乐1. 异构MAS下反导作战多传感器任务规划分层决策框架[J]. 系统工程与电子技术, 2016, 38(8): 1816-1825. |
[12] | 李元锋,刘建平,石成英,王伟. 作战仿真传感器模型探测处理通用方法[J]. 系统工程与电子技术, 2015, 37(4): 802-808. |
[13] | 庞毅1, 孙青林1, 焦纲领2, 赵春龙1, 陈增强1. 基于多Agent的舰艇编队对海攻击仿真系统[J]. 系统工程与电子技术, 2015, 37(10): 2396-2403. |
[14] | 李元锋1,3, 刘建平2, 石成英1, 王洋3. 基于能力测试方法和探索回归分析的体系作战效能评估[J]. 系统工程与电子技术, 2014, 36(7): 1339-1345. |
[15] | 田乐, 曹浪财. 基于lookahead的交互式动态影响图的DMU改进算法[J]. 系统工程与电子技术, 2014, 36(6): 1201-1206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||