1 |
ZHAO B, YANG J A, ZHANG M.Research on blind source separation and blind beamforming[C]//Proc.of the IEEE International Conference on Machine Learning & Cybernetics, 2005: 4389-4393.
|
2 |
NISHIKAWA T, ABE H, SARUWATARI H, et al.Over determined blind source separation of real acoustic sounds based on multistage ICA using sub-array processing[C]//Proc.of the IEEE International Symposium on Signal Processing & Information Technology, 2003: 510-513.
|
3 |
YE F , CHEN J , GAO L , et al. A mixing matrix estimation algorithm for the time-delayed mixing model of the under determined blind source separation problem[J]. Circuits, systems and signal processing, 2019, 38 (4): 1889- 1906.
doi: 10.1007/s00034-018-0930-5
|
4 |
MUSTAFI A , GHORAI S K . A novel blind source separation technique using fractional Fourier transform for denoising medical images[J]. Optik-International Journal for Light and Electron Optics, 2013, 124 (3): 265- 271.
doi: 10.1016/j.ijleo.2011.11.052
|
5 |
CHEN Y Q.Single channel blind source separation based on NMF and its application to speech enhancement[C]//Proc.of the IEEE International Conference on Communication Software and Network (ICCSN), 2017: 1066-1069.
|
6 |
DEY P, TRIVEDI N, SATIJA U, et al.Single channel blind source separation for miso communcation systems[C]//Proc.of the IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017: 1-5.
|
7 |
PAU B , MICHAEL Z . Under determined blind source separation using sparse representations[J]. Signal Processing, 2001, 81 (11): 2353- 2362.
doi: 10.1016/S0165-1684(01)00120-7
|
8 |
LI S F, WU H D, JIN L B, et al.Construction of compressed sensing matrix based on complementary sequence[C]//Proc.of the IEEE 17th International Conference on Communication Technology (ICCT), 2017: 23-27.
|
9 |
LIU Y , ZHAN Z , CAI J , et al. Projected iterative soft thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging[J]. IEEE Trans.on Medical Imaging, 2016, 35 (9): 2130- 2140.
doi: 10.1109/TMI.2016.2550080
|
10 |
李周, 崔琛. 基于奇异值分解的压缩感知观测矩阵优化算法[J]. 计算机应用, 2018, 38 (02): 568- 572.
|
|
LI Z , CUI C . Optimization algorithm of compressed sensing observation matrix based on singular value decomposition[J]. Journal of Computer Applications, 2018, 38 (02): 568- 572.
|
11 |
XU T, WANG W.A compressed sensing approach for under determined blind audio source separation with sparse representation[C]//Proc.of the IEEE/SP 15th Workshop on Statistical Signal Processing (SSP) Cardiff, 2009: 493-496.
|
12 |
WEI X, BAO G, YE Z, et al.Compressed sensing based under determined blind source separation with unsupervised sparse dictionary self-learning[C]//Proc.of the IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), 2013: 1-4.
|
13 |
YANG Z, XIANG Y, LU C.Image encryption based on compressed sensing and blind source separation[C]//Proc.of the International Joint Conference on Neural Networks (IJCNN), 2014: 1366-1369.
|
14 |
冯俊杰, 张弓. 基于迭代加权L2/L1范数块稀疏信号重构的ISAR成像算法[J]. 计算机工程, 2018, 44 (11): 234- 238.
|
|
FENG J J , ZHANG G . ISAR imaging algorithm based on iterative weighted L2/L1 norm block sparse signal reconstruction[J]. Computer Engineering, 2018, 44 (11): 234- 238.
|
15 |
CHAMADIA S, PADOS D A.Optimal sparse L1-norm principal-component analysis[C]//Proc.of the IEEE International Conference on Acoustics, 2017: 2686-2690.
|
16 |
黄杰, 杨孝平. 基于凸松弛方法的医学B超图像快速分割[J]. 自动化学报, 2012, 38 (4): 582- 590.
|
|
HUANG J , YANG X P . Rapid segmentation of medical B-superpixel image based on convex relaxation method[J]. Acta Automatica Sinica, 2012, 38 (4): 582- 590.
|
17 |
YANG E, YAN X, QIN K.A greedy pursuit algorithm for arbitrary block sparse signal recovery[C]//Proc.of the IEEE International Symposium on Circuits and Systems (ISCAS), 2016: 1234-1237.
|
18 |
祁锐.基于压缩感知的块稀疏信号重构算法及其应用研究[D].武汉:中国地质大学, 2018.
|
|
QI R.Block-sparse signal reconstruction algorithm based on compressed sensing and its application[D].Wuhan: China University of Geosciences, 2018.
|
19 |
KULKARNI A , MOHSENIN T . Low overhead architectures for OMP compressive sensing reconstruction algorithm[J]. IEEE Trans.on Circuits and Systems I:Regular Papers, 2017, 64 (6): 1468- 1480.
doi: 10.1109/TCSI.2017.2648854
|
20 |
ZHANG L, ZENG X.Image adaptive reconstruction based on compressive sensing and the genetic algorithm via ROMP[C]//Proc.of the 2nd International Conference on Information Science and Control Engineering, 2015: 265-268.
|
21 |
ZHANG W, HUANG B, ZHOU T.An improvement on StOMP for sparse solution of linear under determined problems[C]//Proc.of the IEEE Control Conference, 2013: 1951-1956.
|
22 |
TAWFIC I , KAYHAN S . Compressed sensing of ECG signal for wireless system with new fast iterative method[J]. ElsevierNorth-Holland, Inc, 2015, 122 (3): 437- 449.
|
23 |
ISRAA S T , SEMA K K . Improving recovery of ECG signal with deterministic guarantees using split signal for multiple supports of matching pursuit (SS-MSMP) algorithm[J]. Computer Methods and Programs in Biomedicine, 2017, 139, 39- 50.
doi: 10.1016/j.cmpb.2016.10.014
|
24 |
孙斌, 赵凯恒. 基于能量分选的正则化匹配追踪改进算法[J]. 电子测量技术, 2016, 39 (5): 154- 158.
doi: 10.3969/j.issn.1002-7300.2016.05.042
|
|
SUN B , ZHAO K H . Improved algorithm for regularized matching pursuit based on energy sorting[J]. Electronic Measurement Technology, 2016, 39 (5): 154- 158.
doi: 10.3969/j.issn.1002-7300.2016.05.042
|
25 |
GOKLANI H S, SARVAIYA J N, FAHAD A M.Image reconstruction using orthogonal matching pursuit (OMP) algorithm[C]//Proc.of the IEEE International Conference on Emerging Technology Trends in Electronics, 2015: 1-5.
|
26 |
LI Y, LIN C, HUANG P.An improved OMP method based on memory effect and its application[C]//Proc.of the International Radar Conference, 2016: 1-5.
|
27 |
BAO G , YE Z , XU X , et al. A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model[J]. IEEE Trans.on Audio, Speech and Language Processing, 2013, 21 (5): 899- 906.
doi: 10.1109/TASL.2012.2234110
|
28 |
CANDES E J , TAO T . Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 51 (12): 4203- 4215.
doi: 10.1109/TIT.2005.858979
|
29 |
WANG R.A method of under determined blind source separation with an unknown number of sources[C]//Proc.of the 3rd International Conference on Computational Intelligence and Applications (ICCIA), 2018: 223-227.
|
30 |
ZHEN L , PENG D , YI Z , et al. Under determined blind source separation using sparse coding[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 28 (12): 3102- 3108.
doi: 10.1109/TNNLS.2016.2610960
|