1 |
JIANG S , WANG B N , XIANG M S , et al. Method for InSAR/INS navigation system based on interferogram matching[J]. IET Radar, Sonar & Navigation, 2018, 12 (9): 938- 944.
|
2 |
ZHONG Y M , GAO S S , LI W . A quaternion-based method for SINS/SAR integrated navigation system[J]. IEEE Trans.on Aerospace & Electronics Systems, 2012, 48 (1): 514- 524.
|
3 |
别博文, 孙路, 邢孟道, 等. 基于局部直角坐标和子区域处理的弹载SAR频域成像算法[J]. 电子与信息学报, 2018, 40 (8): 6- 13.
|
|
BIE B W , SUN L , XING M D , et al. A frequency-domain algorithm based on local cartesian coordinate and subregion processing for missile-borne SAR imaging[J]. Journal of Electronics & Information Technology, 2018, 40 (8): 6- 13.
|
4 |
YANG L , ZHAO L , ZHOU S , et al. Spectrum-oriented FFBP algorithm in quasi-polar grid for SAR imaging on maneuvering platform[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14 (5): 724- 728.
|
5 |
TANG S Y , ZHANG L R , GUO P , et al. Acceleration model analyses and imaging algorithm for highly squinted airborne spotlight mode SAR with maneuvers[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015, 8 (3): 1120- 1131.
|
6 |
CAMLICA S , GURBUZ A C , ARIKAN O . Autofocused spotlight SAR image reconstruction of off-grid sparse scenes[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (4): 1880- 1892.
doi: 10.1109/TAES.2017.2675138
|
7 |
LI Z Y , XING M D , LIANG Y , et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (7): 4023- 4038.
doi: 10.1109/TGRS.2016.2535391
|
8 |
DANG Y F , LIANG Y , BIE B W , et al. A range perturbation approach for correcting spatially variant range envelope in diving highly squinted SAR with nonlinear trajectory[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (6): 858- 862.
|
9 |
CHEN S , ZHANG S N , ZHAO H C . A new chirp scaling algorithm for highly squinted missile-borne SAR based on FrFT[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8 (8): 3977- 3987.
|
10 |
李财品, 何明一. 地球同步轨道SAR凝视成像变脉冲重复频率技术[J]. 电子科技大学学报, 2016, 45 (6): 917- 922.
doi: 10.3969/j.issn.1001-0548.2016.06.007
|
|
LI C P , HE M Y . The technology of pulse repetition frequency variation for geosynchronous orbit SAR with staring imaging[J]. Journal of University of Electronic Science and Technology of China, 2016, 45 (6): 917- 922.
doi: 10.3969/j.issn.1001-0548.2016.06.007
|
11 |
FU R Y , ZHANG D D , SUN Y H . Research of linear charging for repetition-frequency pulse power supply[J]. IEEE Trans.on Plasma Science, 2017, 45 (7): 1585- 1590.
doi: 10.1109/TPS.2017.2706281
|
12 |
郑陶冶, 俞根苗. 弹载SAR脉冲重复频率设计研究[J]. 雷达科学与技术, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006
|
|
ZHENG T Y , YU G M . Design method of pulse repetition frequency of missile-borne side-looking SAR[J]. Radar Science and Technology, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006
|
13 |
YIN W, YANG W F, DING Z G. Pulse repetition frequency design for geosynchronous SAR in ellipcial orbit[C]//Proc.of the IET International Radar Conference, 2015. DOI: 10.1049/cp.2015.1407.
|
14 |
PYNE B, RAVINDRA V. An improved pulse repetition frequency selection scheme for synthetic aperture radar[C]//Proc.of the 12th European Radar Conference, 2015: 257-260.
|
15 |
谢英华, 卢再奇, 周剑雄, 等. 弹载平台聚束SAR成像脉冲重复频率设计[J]. 系统工程与电子技术, 2010, 32 (11): 2294- 2298.
|
|
XIE Y H , LU Z Q , ZHOU J X , et al. Design of pulse repetition frequency for missile-borne spotlight SAR imaging[J]. Systems Engineering and Electronics, 2010, 32 (11): 2294- 2298.
|
16 |
LI Y C , DENG H , QUAN Y H , et al. Sequence design for high squint spotlight SAR imaging on manoeuvring descending trajectory[J]. IET Radar, Sonar & Navigation, 2017, 11 (2): 219- 225.
|
17 |
党彦锋, 梁毅, 别博文, 等. 俯冲段大斜视SAR子孔径成像二维空变校正方法[J]. 电子与信息学报, 2018, 40 (11): 2621- 2629.
|
|
DANG Y F , LIANG Y , BIE B W , et al. Two-dimension space-variance correction approach for diving highly squinted SAR imaging with sub-aperture[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2621- 2629.
|
18 |
李震宇, 梁毅, 邢孟道, 等. 一种俯冲段子孔径SAR大斜视成像及几何校正方法[J]. 电子与信息学报, 2015, 37 (8): 1814- 1820.
|
|
LI Z Y , LIANG Y , XING M D , et al. New subaperture imaging algorithm and geometric correction method for high squint diving SAR based on equivalent squint model[J]. Journal of Electronics & Information Technology, 2015, 37 (8): 1814- 1820.
|
19 |
BIE B W , XING M D , XIA X G , et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (12): 7086- 7101.
doi: 10.1109/TGRS.2018.2848249
|
20 |
TORRES Y , PREMARATNE K , AMELUNG F , et al. An efficient polyphase filter-based resampling method for unifying the PRFs in SAR data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (10): 5741- 5754.
doi: 10.1109/TGRS.2017.2713600
|
21 |
SHU Y X , LIAO G S , YANG Z W . Design considerations of PRF for optimizing GMTI performance in azimuth multichannel SAR systems with HRWS imaging capability[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (4): 2048- 2063.
|
22 |
WU Y M , YU Z , XIAO P , et al. Suppression of azimuth ambiguities in spaceborne SAR images using spectral selection and extrapolation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (10): 6134- 6147.
|
23 |
LIN M, YU Z, LI C S. Azimuth ambiguity suppression for spaceborne SAR based on PRF micro-variation[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 1325-1328.
|
24 |
XU W , HUANG P P , ROBERT W , et al. Processing of multichannel sliding spotlight and TOPS synthetic aperture radar data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (8): 4417- 4429.
doi: 10.1109/TGRS.2013.2265306
|
25 |
ZENG T , LI Y H , DING Z G , et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (12): 6718- 6734.
doi: 10.1109/TGRS.2015.2447393
|
26 |
WANG C H , XU J W , LIAO G S , et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11 (2): 336- 346.
doi: 10.1109/JSTSP.2016.2605064
|
27 |
KRIERER G, HUBER S, VILLANO M, et al. CEBRAS: cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 196-199.
|
28 |
VILLANO M , KRIERER G , MOREIRA A . Nadir echo removal in synthetic aperture radar via waveform diversity and dual-focus post processing[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 719- 723.
doi: 10.1109/LGRS.2018.2808196
|
29 |
YANG M D , ZHU D Y . Efficient space-variant motion compensation approach for ultra-high-resolution SAR based on subswath processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (6): 2090- 2103.
doi: 10.1109/JSTARS.2018.2799601
|