系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (3): 557-567.doi: 10.3969/j.issn.1001-506X.2020.03.008
刘佩1(), 贾建1,2,*(), 陈莉1(), 安影1()
收稿日期:
2019-07-04
出版日期:
2020-03-01
发布日期:
2020-02-28
通讯作者:
贾建
E-mail:201720987@stumail.nwu.edu.cn;jiajian@nwu.edu.cn;chenli@nwu.edu.cn;201721013@stumail.nwu.edu.cn
作者简介:
刘佩(1993-),女,硕士研究生,主要研究方向为机器学习、图像处理。E-mail:基金资助:
Pei LIU1(), Jian JIA1,2,*(), Li CHEN1(), Ying AN1()
Received:
2019-07-04
Online:
2020-03-01
Published:
2020-02-28
Contact:
Jian JIA
E-mail:201720987@stumail.nwu.edu.cn;jiajian@nwu.edu.cn;chenli@nwu.edu.cn;201721013@stumail.nwu.edu.cn
Supported by:
摘要:
为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation, HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。
中图分类号:
刘佩, 贾建, 陈莉, 安影. 基于增强高阶非凸全变分模型的图像去噪算法[J]. 系统工程与电子技术, 2020, 42(3): 557-567.
Pei LIU, Jian JIA, Li CHEN, Ying AN. Image denoising algorithm based on boosting high order non-convex total variation model[J]. Systems Engineering and Electronics, 2020, 42(3): 557-567.
表1
加入噪声标准差为20的视频foreman 20帧的去噪结果对比"
帧数 | SBATV | PATV | OGSTV | HONTV | 本文算法 |
86 | 28.63/0.853 | 28.90/0.853 | 28.89/0.834 | 29.32/0.876 | 29.50/0.877 |
50 | 28.63/0.857 | 29.35/0.857 | 29.09/0.824 | 29.74/0.878 | 29.86/0.882 |
49 | 28.68/0.853 | 29.40/0.859 | 29.10/0.827 | 29.59/0.876 | 29.86/0.880 |
53 | 28.59/0.855 | 29.26/0.858 | 29.02/0.835 | 29.44/0.874 | 29.80/0.881 |
4 | 29.09/0.865 | 29.75/0.866 | 29.35/0.830 | 29.80/0.885 | 30.19/0.888 |
18 | 28.68/0.859 | 29.05/0.860 | 28.87/0.832 | 29.48/0.878 | 29.65/0.880 |
28 | 28.47/0.858 | 29.14/0.861 | 28.84/0.835 | 29.42/0.879 | 29.87/0.883 |
54 | 28.74/0.858 | 29.10/0.856 | 28.99/0.824 | 29.38/0.875 | 29.65/0.878 |
58 | 28.39/0.853 | 29.00/0.862 | 28.71/0.831 | 29.43/0.875 | 29.54/0.878 |
23 | 28.56/0.856 | 29.05/0.859 | 28.83/0.826 | 29.44/0.879 | 29.68/0.882 |
25 | 28.61/0.858 | 29.06/0.862 | 28.85/0.830 | 29.51/0.881 | 29.55/0.882 |
24 | 28.53/0.859 | 29.04/0.859 | 28.89/0.828 | 29.62/0.883 | 29.67/0.883 |
88 | 28.57/0.857 | 28.99/0.855 | 28.89/0.839 | 29.37/0.882 | 29.54/0.880 |
5 | 29.22/0.866 | 29.58/0.859 | 29.27/0.831 | 29.72/0.881 | 30.05/0.882 |
31 | 28.68/0.860 | 29.27/0.865 | 28.73/0.826 | 29.24/0.876 | 29.77/0.885 |
36 | 28.67/0.850 | 29.28/0.858 | 28.83/0.820 | 29.49/0.876 | 29.76/0.877 |
15 | 28.76/0.865 | 29.26/0.863 | 28.83/0.829 | 29.50/0.880 | 29.86/0.884 |
37 | 28.62/0.852 | 29.36/0.859 | 29.01/0.824 | 29.39/0.873 | 29.61/0.876 |
74 | 29.12/0.857 | 29.71/0.861 | 29.49/0.825 | 29.72/0.877 | 30.05/0.882 |
89 | 28.74/0.860 | 29.07/0.859 | 28.96/0.835 | 29.51/0.875 | 29.65/0.879 |
平均值 | 28.69/0.857 | 29.23/0.859 | 28.97/0.829 | 29.50/0.878 | 29.75/0.880 |
表2
加入噪声标准差为50的视频foreman 20帧的去噪结果对比"
帧数 | SBATV | PATV | OGSTV | HONTV | 本文算法 |
70 | 25.10/0.731 | 25.23/0.732 | 25.14/0.726 | 25.23/0.754 | 25.33/0.763 |
87 | 24.24/0.721 | 24.54/0.717 | 24.61/0.725 | 24.67/0.742 | 24.60/0.753 |
47 | 24.90/0.744 | 24.80/0.737 | 24.73/0.723 | 24.98/0.749 | 25.05/0.760 |
79 | 25.05/0.733 | 24.99/0.713 | 24.76/0.715 | 24.96/0.741 | 25.19/0.755 |
90 | 24.67/0.740 | 24.65/0.721 | 24.76/0.731 | 24.94/0.748 | 24.84/0.757 |
85 | 24.63/0.726 | 24.57/0.719 | 24.49/0.714 | 24.57/0.738 | 24.52/0.736 |
94 | 25.12/0.737 | 24.89/0.729 | 24.92/0.723 | 24.73/0.750 | 25.04/0.754 |
30 | 24.60/0.744 | 24.73/0.744 | 24.69/0.715 | 24.65/0.753 | 24.95/0.764 |
39 | 24.76/0.751 | 24.85/0.740 | 24.77/0.733 | 24.81/0.740 | 24.69/0.755 |
26 | 24.61/0.746 | 24.85/0.740 | 24.44/0.728 | 24.65/0.751 | 24.94/0.770 |
41 | 24.95/0.752 | 24.86/0.740 | 24.96/0.735 | 24.82/0.744 | 25.15/0.763 |
81 | 24.64/0.720 | 24.88/0.821 | 24.88/0.716 | 24.86/0.745 | 24.97/0.750 |
42 | 25.10/0.749 | 24.89/0.736 | 24.91/0.726 | 24.91/0.747 | 25.15/0.763 |
54 | 24.54/0.725 | 24.50/0.726 | 24.53/0.723 | 24.62/0.741 | 24.69/0.743 |
10 | 24.89/0.738 | 24.78/0.734 | 24.84/0.731 | 24.93/0.756 | 25.14/0.766 |
51 | 24.74/0.735 | 25.03/0.730 | 24.77/0.725 | 24.89/0.749 | 25.13/0.759 |
34 | 24.81/0.735 | 24.72/0.742 | 24.53/0.724 | 24.76/0.746 | 24.84/0.751 |
18 | 24.63/0.735 | 24.73/0.743 | 24.63/0.726 | 24.74/0.739 | 24.66/0.748 |
55 | 24.40/0.727 | 24.50/0.728 | 24.43/0.718 | 24.65/0.737 | 24.86/0.752 |
4 | 24.90/0.747 | 24.88/0.738 | 24.87/0.726 | 24.87/0.743 | 25.06/0.757 |
平均值 | 24.78/0.738 | 24.85/0.731 | 24.70/0.724 | 24.81/0.746 | 24.98/0.755 |
1 | RUDIN L I , OSHER S , FATEMI E . Nonlinear total variation based noise removal algorithms[J]. Physica D:nonlinear phenomena, 1992, 60 (1/4): 259- 268. |
2 |
GOLDSTEIN T , OSHER S . The split Bregman method for L1-regularized problems[J]. Siam urnal on imaging sciences, 2009, 2 (2): 323- 343.
doi: 10.1137/080725891 |
3 | MICCHELLI C A, SHEN L, XU Y. Proximity algorithms for image models: denoising[J]. Inverse Problems, 2011, 27(4): Article ID: 045009. |
4 |
YOU Y L , KAVEH M . Fourth-order partial differential equations for noise removal[J]. IEEE Trans.on Image Processing, 2000, 9 (10): 1723- 1730.
doi: 10.1109/83.869184 |
5 |
LYSAKER M , LUNDERVOLD A , TAI X C . Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Trans.on Image Processing, 2003, 12 (12): 1579- 1590.
doi: 10.1109/TIP.2003.819229 |
6 | LV X G , SONG Y Z , WANG S X , et al. Image restoration with a high-order total variation minimization method[J]. Applied Mathematical Modelling, 2013, 37 (16/17): 8210- 8224. |
7 |
BREDIES K , KUNISCH K , POCK T . Total generalized variation[J]. SIAM Journal on Imaging Sciences, 2010, 3 (3): 492- 526.
doi: 10.1137/090769521 |
8 |
HE C H , HU C H , YANG X G , et al. An adaptive total generalized variation model with augmented Lagrangian method for image denoising[J]. Mathematical Problems in Engineering, 2014.
doi: 10.1155/2014/157893 |
9 |
WALI S , ZHANG H , CHANG H , et al. A new adaptive boosting total generalized variation (TGV) technique for image denoising and inpainting[J]. Journal of Visual Communication and Image Representation, 2019, 59, 39- 51.
doi: 10.1016/j.jvcir.2018.12.047 |
10 |
PAPAFITSOROS K , SCHÖNLIEB C B . A combined first and second order variational approach for image reconstruction[J]. Journal of Mathematical Imaging and Vision, 2014, 48 (2): 308- 338.
doi: 10.1007/s10851-013-0445-4 |
11 | LIU J , HUANG T Z , SELESNICK I W , et al. Image restoration using total variation with overlapping group sparsity[J]. Information Sciences, 2015, 295 (C): 232- 246. |
12 | LIU R W, WU D, WU C S, et al. Constrained nonconvex hybrid variational model for edge-preserving image restoration[C]//Proc.of the IEEE International Conference on Systems, Man, and Cybernetics, 2015: 1809-1814. |
13 |
SHI M , HAN T , LIU S . Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity[J]. Signal Processing, 2016, 126, 65- 76.
doi: 10.1016/j.sigpro.2015.11.022 |
14 |
WANG H Y , LI Y , CEN Y G , et al. Multi-matrices low-rank decomposition with structural smoothness for image denoising[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2019.
doi: 10.1109/TCSVT.2019.2890880 |
15 |
WANG H , CEN Y , HE Z , et al. Reweighted low-rank matrix analysis with structural smoothness for image denoising[J]. IEEE Trans.on Image Processing, 2018, 27 (4): 1777- 1792.
doi: 10.1109/TIP.2017.2781425 |
16 |
KUMAR A , AHMAD M O , SWAMY M N S . Tchebichef and adaptive steerable-based total variation model for image denoising[J]. IEEE Trans.on Image Processing, 2019, 28 (6): 2921- 2935.
doi: 10.1109/TIP.2019.2892663 |
17 |
ADAM T , PARAMESRAN R . Image denoising using combined higher order non-convex total variation with overlapping group sparsity[J]. Multidimensional Systems and Signal Processing, 2019, 30 (1): 503- 527.
doi: 10.1007/s11045-018-0567-3 |
18 | SELESNICK I W, CHEN P Y. Total variation denoising with overlapping group sparsity[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 5696-5700. |
19 | PEYRÉ G, FADILI J. Group sparsity with overlapping partition functions[C]//Proc.of the 19th IEEE European Signal Processing Conference, 2011: 303-307. |
20 | BOYD S , PARIKH N , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine learning, 2011, 3 (1): 1- 122. |
21 | CANDES E J , WAKIN M B , BOYD S P . Enhancing sparsity by reweighted $\ell$1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14 (5/6): 877- 905. |
22 | LYU Q , LIN Z , SHE Y , et al. A comparison of typical $\ell$p minimization algorithms[J]. Neurocomputing, 2013, 119 (16): 413- 424. |
23 | CHEN X , ZHOU W . Convergence of the reweighted $\ell$1 minimization algorithm for $\ell$2-$\ell$p minimization[J]. Computational Optimization and Applications, 2014, 59 (1/2): 47- 61. |
24 |
CHAN R H , TAO M , YUAN X . Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[J]. SIAM Journal on imaging Sciences, 2013, 6 (1): 680- 697.
doi: 10.1137/110860185 |
25 |
HE C , HU C H , LI X D , et al. A parallel alternating direction method with application to compound $\ell$1-regularized imaging inverse problems[J]. Information Sciences, 2016, 348, 179- 197.
doi: 10.1016/j.ins.2016.01.087 |
26 | WANG Y , YIN W , ZENG J . Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of Scientific Computing, 2019, 78 (1): 29- 63. |
27 | TAO M, YANG J F. Alternating direction algorithms for total variation deconvolution in image reconstruction[R]. Nanjing University, 2009. |
28 |
CONDAT L . A generic proximal algorithm for convex optimization—application to total variation minimization[J]. IEEE Signal Processing Letters, 2014, 21 (8): 985- 989.
doi: 10.1109/LSP.2014.2322123 |
29 | UNIVERSITY of Granada. Standard denoised image data set.[EB/OL].[2019-05-06].http://decsai.ugr.es/~javier/denoise/test-images. |
30 | JIAN Z. The source code of the SBATV method.[EB/OL].[2019-03-01].https://github.com/zj15001/nonconvex_TV_denoise. |
31 | TARMIZI ADAM. The source code of the PATV method.[EB/OL].[2011-03-17]. https://github.com/tarmiziAdam2005. |
32 | TARMIZI ADAM. The source code of the OGSTV method.[EB/OL].[2015-09-22]. https://github.com/tarmiziAdam2005. |
33 | TARMIZI ADAM. The source code of the HONTV method.[EB/OL].[2018-03-17]. https://github.com/tarmiziAdam2005. |
34 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
[1] | 陈玉香, 陈胜垚, 冉龙瑶, 席峰. 动态超表面天线阵列混合发射波束成形[J]. 系统工程与电子技术, 2022, 44(3): 730-736. |
[2] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[3] | 陈诚, 刘涛, 宋晓骥, 粟毅, 金光虎. 基于稀疏信号处理的穿透成像增强算法[J]. 系统工程与电子技术, 2021, 43(8): 2021-2027. |
[4] | 丁逊, 张劲东, 王娜, 王玉莹. 基于相参积累的捷变频雷达系统相位误差估计与稀疏场景重构算法[J]. 系统工程与电子技术, 2021, 43(6): 1515-1523. |
[5] | 邵凯, 陈连成, 刘胤. 高移动性Jakes信道的学习与估计[J]. 系统工程与电子技术, 2021, 43(4): 1119-1125. |
[6] | 杨真真, 乐俊, 杨永鹏, 范露. 非凸运动辅助低秩稀疏分解目标检测算法[J]. 系统工程与电子技术, 2020, 42(6): 1218-1225. |
[7] | 王彩云, 赵焕玥, 王佳宁, 李晓飞, 黄盼盼. 快速加权核范数最小化的SAR图像去噪算法[J]. 系统工程与电子技术, 2019, 41(7): 1504-1508. |
[8] | 王彩云, 胡允侃, 吴淑侠. 基于贝叶斯模型的shearlet域SAR图像去噪方法[J]. 系统工程与电子技术, 2017, 39(6): 1250-1255. |
[9] | 胡悦, 仲崇潇, 曹梦宇, 赵旷世. 基于增广拉格朗日乘子的快速高阶全变分图像去噪方法[J]. 系统工程与电子技术, 2017, 39(12): 2831-2839. |
[10] | 李博, 谢巍. 基于自适应分数阶微积分的图像去噪与增强算法[J]. 系统工程与电子技术, 2016, 38(1): 185-192. |
[11] | 刘书君, 吴国庆, 张新征, 徐礼培. 基于Shearlet域系数处理的SAR图像降噪[J]. 系统工程与电子技术, 2015, 37(9): 2023-2028. |
[12] | 黄果, 许黎, 陈庆利, 蒲亦非. 基于时间-空间分数阶偏微分方程的图像去噪模型[J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1741-1752. |
[13] | 刘帅奇, 胡绍海, 肖扬. 基于局部混合滤波的SAR图像去噪[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 396-402. |
[14] | 胡根生1,2. 梁栋1,2,黄林生1,2. 基于支持向量值轮廓波变换的遥感图像去噪[J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1658-1663. |
[15] | 黄果, 蒲亦非, 陈庆利, 周激流 . 基于分数阶积分的图像去噪[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 925-932. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||