1 |
PAL M , FOODY G M . Feature selection for classification of hyperspectral data by SVM[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48 (5): 2297- 2307.
doi: 10.1109/TGRS.2009.2039484
|
2 |
CHEN Y , NASRABADI N M , TRAN T D . Hyperspectral image classification via kernel sparse representation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (1): 217- 231.
doi: 10.1109/TGRS.2012.2201730
|
3 |
CAMPS-VALLS G , BANDOS M T , ZHOU D . Semi-supervised graph-based hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (10): 3044- 3054.
doi: 10.1109/TGRS.2007.895416
|
4 |
MELGANI F , BRUZZONE L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans.on Geoscience and Remote Sensing, 2004, 42 (8): 1778- 1790.
doi: 10.1109/TGRS.2004.831865
|
5 |
XIE H , ZHAO A , HUANG S , et al. Unsupervised hyperspectral remote sensing image clustering based on adaptive density[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (4): 632- 636.
|
6 |
WINDRIM L , RAMAKRISHAN R , MELKUMYAN A , et al. A physics-based deep learning approach to shadow invariant representations of hyperspectral images[J]. IEEE Trans.on Image Processing, 2018, PP (99): 1.
|
7 |
LI J , ZHAO X , LI Y , et al. Classification of hyperspectral imagery using a new fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (2): 292- 296.
doi: 10.1109/LGRS.2017.2786272
|
8 |
LEE H, KWON H. Contextual deep CNN based hyperspectral classification[C]//Proc.of the Geoscience & Remote Sensing Symposium, 2016: 1-1.
|
9 |
CHEN Y , JIANG H , LI C , et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (10): 6232- 6251.
doi: 10.1109/TGRS.2016.2584107
|
10 |
LEE H , KWON H . Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Trans.on Image Process, 2017, 26 (10): 4843- 4855.
doi: 10.1109/TIP.2017.2725580
|
11 |
CHEN Y , NARSRABADI N M , TRAN T D . Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (10): 3973- 3985.
doi: 10.1109/TGRS.2011.2129595
|
12 |
BIOUCAS-DIAS J M , PLAZA A , CAMPS-VALLS G , et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (2): 6- 36.
doi: 10.1109/MGRS.2013.2244672
|
13 |
TU B , HUANG S Y , FANG L , et al. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 1- 13.
|
14 |
ZHANG H , LI J , HUANG Y , et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6): 2056- 2065.
doi: 10.1109/JSTARS.2013.2264720
|
15 |
陈善学, 周艳发, 漆若兰. 基于核函数的联合稀疏表示高光谱图像分类[J]. 系统工程与电子技术, 2018, 40 (3): 692- 698.
|
|
CHEN S X , ZHOU Y F , QI R L . Joint sparse representation of hyperspectral image classification based on Kernel function[J]. Systems Engineering and Electronices, 2018, 40 (3): 692- 698.
|
16 |
AHARON M , ELAD M , BRUCKSTEIN A . K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans.on Signal Processing, 2006, 54, 4311- 4322.
doi: 10.1109/TSP.2006.881199
|
17 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
18 |
TIBSHIRANI R J . Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society (Series B: Methodological), 1996, 73 (1): 273- 282.
|
19 |
WRIGHT S J , NOWAK R D , FIGUEIREDO M A T . Sparse reconstruction by separable approximation[J]. IEEE Trans.on Signal Processing, 2009, 57 (7): 2479- 2493.
doi: 10.1109/TSP.2009.2016892
|
20 |
CUI M , PRASAD S . Class-dependent sparse representation classifier for robust hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (5): 2683- 2695.
doi: 10.1109/TGRS.2014.2363582
|
21 |
陈善学, 桂成名, 王一宁, 等. 基于紧耦合像元的自适应增强类内稀疏表示高光谱图像分类[J]. 系统工程与电子技术, 2017, 39 (3): 655- 661.
|
|
CHEN S X , GUI C M , WANG Y N , et al. Close coupled set of pixels-based adaptive boosting class-wise sparse representation classifier for robust hyperspectral image classification[J]. and Electronices, 2017, 39 (3): 655- 661.
|