系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 497-505.doi: 10.3969/j.issn.1001-506X.2020.02.32
• 可靠性 • 上一篇
收稿日期:
2019-05-07
出版日期:
2020-02-01
发布日期:
2020-01-23
作者简介:
雷杰(1996-),男,硕士研究生,主要研究方向为证据推理、故障诊断。E-mail:基金资助:
Jie LEI(), Xiaobin XU(), Xiaojian XU(), Leilei CHANG()
Received:
2019-05-07
Online:
2020-02-01
Published:
2020-01-23
Supported by:
摘要:
针对具有不确定性的并发故障诊断问题,提出基于属性权重和权衡分析的置信规则库(belief rule base, BRB)诊断方法。以属性权重大小来表示属性与特定故障模式之间的相关性,设计能够反映故障模型约束的基于差分进化的优化算法,通过相邻故障模式置信度与预设阈值的权衡分析完成对并发故障诊断。该方法仅需构造单个置信规则库来有效处理各种不确定性信息,与已有研究方法相比极大地降低了建模复杂度。诊断结果不仅能得到故障的并发情况,还可分辨故障的主次关系,并且建模和推理过程开放,可解释性强。最后以船用柴油机的并发故障诊断作为实例,验证了所提方法能够有效的诊断出并发故障并且模型具有较好的稳定性。
中图分类号:
雷杰, 徐晓滨, 徐晓健, 常雷雷. 基于置信规则库的并发故障诊断方法[J]. 系统工程与电子技术, 2020, 42(2): 497-505.
Jie LEI, Xiaobin XU, Xiaojian XU, Leilei CHANG. Concurrent fault diagnosis method based on belief rule base[J]. Systems Engineering and Electronics, 2020, 42(2): 497-505.
表3
等属性权重并集BRB"
规则 | 规则权重 | 前提属性 | 故障评估结果 | ||||||||
Fe | Al | Pb | Si | 正常 | 故障1 | 故障2 | 故障3 | 故障4 | |||
规则1 | 0.980 6 | 12.500 0 | 2.900 0 | 2.000 0 | 1.600 0 | 0.779 1 | 0.096 5 | 0.201 8 | 0.141 3 | 0.073 7 | |
规则2 | 0.679 8 | 58.801 6 | 3.347 8 | 13.021 4 | 35.444 5 | 0.056 0 | 0.654 3 | 0.127 5 | 0.003 8 | 0.116 2 | |
规则3 | 0.029 3 | 28.583 2 | 18.512 9 | 18.498 8 | 26.021 8 | 0.071 0 | 0.177 1 | 0.257 1 | 0.124 5 | 0.123 7 | |
规则4 | 0.543 7 | 83.917 5 | 21.588 1 | 7.044 1 | 8.459 1 | 0.062 1 | 0.023 6 | 0.136 2 | 0.670 8 | 0.542 2 | |
规则5 | 0.389 5 | 85.300 0 | 26.400 0 | 18.500 0 | 52.300 0 | 0.031 9 | 0.048 6 | 0.277 3 | 0.059 6 | 0.144 3 |
表4
固定属性权重并集BRB"
规则 | 规则权重 | 前提属性 | 故障评估结果 | ||||||||
Fe | Al | Pb | Si | 正常 | 故障1 | 故障2 | 故障3 | 故障4 | |||
规则1 | 0.474 5 | 12.500 0 | 2.900 0 | 2.000 0 | 1.600 0 | 0.441 4 | 0.479 4 | 0.063 6 | 0.065 7 | 0.082 6 | |
规则2 | 0.215 7 | 44.876 4 | 23.204 3 | 4.868 9 | 4.357 1 | 0.082 9 | 0.047 7 | 0.379 6 | 0.084 2 | 0.386 6 | |
规则3 | 0.802 8 | 75.013 1 | 7.316 9 | 11.192 2 | 31.884 6 | 0.310 7 | 0.162 7 | 0.299 9 | 0.199 1 | 0.144 5 | |
规则4 | 0.604 8 | 71.251 4 | 13.064 3 | 6.776 9 | 15.427 2 | 0.148 3 | 0.273 3 | 0.009 2 | 0.315 9 | 0.251 6 | |
规则5 | 0.492 3 | 85.300 0 | 26.400 0 | 18.500 0 | 52.300 0 | 0.016 7 | 0.037 1 | 0.247 8 | 0.335 1 | 0.134 6 |
表5
优化属性权重并集BRB"
规则 | 规则权重 | 前提属性 | 故障评估结果 | ||||||||
Fe | Al | Pb | Si | 正常 | 故障1 | 故障2 | 故障3 | 故障4 | |||
规则1 | 0.782 9 | 12.500 0 | 2.900 0 | 2.000 0 | 1.600 0 | 0.439 7 | 0.124 9 | 0.065 6 | 0.288 5 | 0.136 4 | |
规则2 | 0.589 5 | 31.846 2 | 26.265 6 | 7.831 8 | 19.212 1 | 0.125 3 | 0.022 6 | 0.457 5 | 0.165 0 | 0.251 9 | |
规则3 | 0.581 9 | 22.425 0 | 9.777 3 | 10.855 2 | 39.920 5 | 0.232 8 | 0.266 9 | 0.256 1 | 0.035 7 | 0.108 3 | |
规则4 | 0.188 0 | 41.403 1 | 13.775 7 | 4.946 2 | 5.765 9 | 0.100 7 | 0.345 9 | 0.032 9 | 0.097 0 | 0.169 5 | |
规则5 | 0.475 2 | 85.300 0 | 26.400 0 | 18.500 0 | 52.300 0 | 0.101 5 | 0.239 6 | 0.187 9 | 0.413 9 | 0.333 8 |
表7
不同策略及不同BRB的结果对比"
规则库 | 规则数 | 数据集 | 最小值 | 均值 | 方差 | 最优解 |
等属性权重交集BRB | 81 | 训练集 | 0 | 2.733 8E-01 | 9.555 0E-03 | 1.052 6E-01 |
测试集 | 7.407 4E-02 | 3.307 8E-01 | 2.037 3E-02 | |||
固定属性权重交集BRB | 81 | 训练集 | 0 | 3.862 0E-03 | 4.400 0E-05 | 1.315 8E-02 |
测试集 | 3.703 7E-02 | 1.098 3E-01 | 1.909 0E-03 | |||
优化属性权重交集BRB | 81 | 训练集 | 0 | 2.824 0E-03 | 4.220 0E-05 | 6.579 0E-03 |
测试集 | 3.703 7E-02 | 1.198 3E-01 | 2.582 0E-03 | |||
等属性权重并集BRB | 5 | 训练集 | 3.280 0E-01 | 4.512 9E-01 | 9.135 0E-03 | 3.486 8E-01 |
测试集 | 3.333 3E-01 | 5.446 6E-01 | 2.432 0E-02 | |||
固定属性权重并集BRB | 5 | 训练集 | 0 | 1.117 4E-01 | 7.883 0E-03 | 3.947 4E-02 |
测试集 | 7.407 4E-02 | 2.150 5E-01 | 1.073 8E-02 | |||
优化属性权重并集BRB | 5 | 训练集 | 0 | 1.077 5E-01 | 6.065 0E-03 | 3.289 5E-02 |
测试集 | 0 | 2.407 4E-01 | 1.185 9E-02 |
1 | XU X J , YANG X P , SHENG C X , et al. A belief rule-based expert system for fault diagnosis of marine diesel engines[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2017, 1- 17. |
2 | ZHOU Z J , HU G Y , ZHANG B C , et al. A model for hidden behavior prediction of complex systems based on belief rule base and power set[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2017, 48 (9): 1649- 1655. |
3 | 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43 (3): 349- 365. |
PENG K X , MA L , ZHANG K . Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43 (3): 349- 365. | |
4 | 张弢, 王金波, 张涛. 基于相关矩阵与概率模型的故障模糊诊断[J]. 系统工程与电子技术, 2018, 40 (2): 346- 352. |
ZHANG T , WANG J B , ZHANG T . Fault fuzzy diagnosis based on correlation matrix and probability model[J]. Systems Engineering and Electronics, 2018, 40 (2): 346- 352. | |
5 |
WAN L Q , CHEN H Z , OUYANG L H . Response surface methodology-based hybrid robust design optimization for complex product under mixed uncertainties[J]. Journal of Systems Engineering and Electronics, 2019, 30 (2): 308- 318.
doi: 10.21629/JSEE.2019.02.10 |
6 |
CHEN C , DU Z J , LIANG X X , et al. Modeling and solution based on stochastic games for development of COA under uncertainty[J]. Journal of Systems Engineering and Electronics, 2019, 30 (2): 288- 296.
doi: 10.21629/JSEE.2019.02.08 |
7 | DAROOGHEH N , MESKIN N , KHORASANI K . A dual particle filter-based fault diagnosis scheme for nonlinear systems[J]. IEEE Trans.on control systems technology, 2017, 26 (4): 1317- 1334. |
8 | VONG C M , WONG P K , IP W F , et al. Simultaneous-fault diagnosis of automotive engine ignition systems using prior domain knowledge and relevance vector machine[J]. Mathematical Problems in Engineering, 2013, (5): 1- 19. |
9 |
YANG Y N , YAN Y . Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 580- 586.
doi: 10.21629/JSEE.2018.03.15 |
10 |
LI X , CAI J , ZUO H F , et al. Joint optimization of sampling interval and control for condition-based maintenance using availability maximization criterion[J]. Journal of Systems Engineering and Electronics, 2018, 29 (1): 203- 215.
doi: 10.21629/JSEE.2018.01.21 |
11 |
CAI B P , LIU Y H , FAN Q , et al. Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network[J]. Applied Energy, 2014, 114, 1- 9.
doi: 10.1016/j.apenergy.2013.09.043 |
12 | 袁杰, 王福利, 王姝, 等. 基于D-S融合的混合专家知识系统故障诊断方法[J]. 自动化学报, 2017, 43 (9): 1580- 1587. |
YUAN J , WANG F L , WANG S , et al. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system[J]. Acta Automatica Sinica, 2017, 43 (9): 1580- 1587. | |
13 | 刘久富, 张治国, 郑锐, 等. 双组元推进系统的部分可观时间Petri网故障诊断[J]. 系统工程与电子技术, 2018, 40 (6): 1337- 1344. |
LIU J F , ZHANG Z G , ZHENG R , et al. Fault diagnosis of bipropellant propulsion system using partially observed time Petri nets[J]. Systems Engineering and Electronics, 2018, 40 (6): 1337- 1344. | |
14 | 徐晓滨, 文成林, 蒋海娜, 等. 基于随机集理论的并发故障诊断信息融合方法[J]. 仪器仪表学报, 2010, 31 (2): 334- 340. |
XU X B , WEN C L , JIANG H N , et al. Information fusion method of simultaneous fault diagnosis based on random set theory[J]. Chinese Journal of Scientific Instrument, 2010, 31 (2): 334- 340. | |
15 | WU T , LI F , YANG C , et al. Event-based fault detection filtering for complex networked jump systems[J]. IEEE/ASME Trans.on Mechatronics, 2017, 23 (2): 497- 505. |
16 |
LI G L , ZHOU Z J , HU C H , et al. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base[J]. Safety Science, 2017, 93, 108- 120.
doi: 10.1016/j.ssci.2016.11.011 |
17 | 郭清, 夏虹, 韩文伟. DSmT的主冷却剂泵并发故障融合方法分析[J]. 哈尔滨工业大学学报, 2014, 46 (9): 111- 115. |
GUO Q , XIA H , HAN W W . Concurrent fault information fusion methods of main cool ant pump based on DSmT[J]. Journal of Harbin Institute of Technology, 2014, 46 (9): 111- 115. | |
18 |
NEWMAN I R , GIBB M , THOMPSON V . Rule-based reasoning is fast and belief-based reasoning can be slow: challenging current explanations of belief-bias and base-rate neglect[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017, 43 (7): 1154- 1170.
doi: 10.1037/xlm0000372 |
19 |
YANG J B , LIU J , WANG J , et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Trans.on System Man Cybernetics-Part A System Humans, 2006, 36 (2): 266- 285.
doi: 10.1109/TSMCA.2005.851270 |
20 | CHANG L L , ZHOU Z J , CHEN Y W , et al. Belief rule base structure and parameter joint optimization under disjunctive assumption for nonlinear complex system modeling[J]. IEEE Trans.on Systems, Man, and Cybernetics:Systems, 2017, 48 (9): 1542- 1554. |
21 |
YANG L H , WANG Y M , LAN Y X , et al. A data envelopment analysis (DEA)-based method for rule reduction in extended belief-rule-based systems[J]. Knowledge-Based Systems, 2017, 123, 174- 187.
doi: 10.1016/j.knosys.2017.02.021 |
22 |
EFANOV D V , SAPOZHNIKOV V V , SAPOZHNIKOV V V . Conditions for detecting a logical element fault in a combination device under concurrent checking based on Berger's code[J]. Automation and Remote Control, 2017, 78 (5): 891- 901.
doi: 10.1134/S0005117917050113 |
23 |
YANG J B , XU D L . Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205, 1- 29.
doi: 10.1016/j.artint.2013.09.003 |
24 | SONG B , ZHOU X , SHI H , et al. Performance-indicator-oriented concurrent subspace process monitoring method[J]. IEEE Trans.on Industrial Electronics, 2018, 66 (7): 5535- 5545. |
25 |
CHANG L L , ZHOU Z J , CHEN Y W , et al. Belief rule base structure and parameter joint optimization under disjunctive assumption[J]. IEEE Trans.on Man, Systems and Cybernetics: Systems, 2018, 48, 1542- 1554.
doi: 10.1109/TSMC.2017.2678607 |
26 |
CHANG L L , ZHOU Z J , LIAO H C , et al. Generic disjunctive belief rule base modeling, inference, and optimization[J]. IEEE Trans.on Fuzzy Systems, 2019, 27 (9): 1866- 1880.
doi: 10.1109/TFUZZ.2019.2892348 |
27 | ARANDA L A , REVIRIEGO P , MAESTRO J A . A comparison of dual modular redundancy and concurrent error detection in finite impulse response filters implemented in SRAM-Based FPGAs through fault injection[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2017, 65 (3): 376- 380. |
28 | QIN A , HU Q , LYU Y , et al. Concurrent fault diagnosis based on Bayesian discriminating analysis and time series analysis with dimensionless parameters[J]. IEEE Sensors Journal, 2018, 19 (6): 2254- 2265. |
29 | PRICE K V. Differential evolution vs. the functions of the 2nd ICEO[C]//Proc.of the IEEE International Conference on Evolutionary Computation, 1997: 153-157. |
30 | STORN R M. On the usage of differential evolution for function optimization[C]//Proc.of the North American Fuzzy Information Processing, 1996: 519-523. |
31 | STORN R, PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution[C]//Proc.of the IEEE International Conference on Evolutionary Computation, 1996: 842-844. |
[1] | 曾斌, 王睿, 李厚朴, 樊旭. 基于强化学习的战时保障力量调度策略研究[J]. 系统工程与电子技术, 2022, 44(1): 199-208. |
[2] | 曾斌, 张泉先, 李厚朴. 不确定条件下后装协同保障链优化调度[J]. 系统工程与电子技术, 2021, 43(5): 1277-1286. |
[3] | 李宗星, 张锐. 基于Riccati方程的导弹自适应姿态控制[J]. 系统工程与电子技术, 2020, 42(6): 1358-1365. |
[4] | 刘帅, 赵国荣, 曾宾, 高超. 带丢包和量化的参数不确定系统滚动时域估计[J]. 系统工程与电子技术, 2020, 42(4): 912-918. |
[5] | 董昕昊, 周志杰, 张友民, 冯志超, 曹友. 基于置信规则库的捷联惯组误差系数预测方法[J]. 系统工程与电子技术, 2020, 42(12): 2867-2874. |
[6] | 陈宇奇, 徐廷学, 李志强, 李海君. 基于证据GO法的复杂多态系统动态可靠性分析[J]. 系统工程与电子技术, 2020, 42(1): 230-237. |
[7] | 冯泽彪, 汪建均. 考虑响应共变特性的多响应稳健参数设计[J]. 系统工程与电子技术, 2019, 41(9): 2048-2057. |
[8] | 江登英, 张徐军. 基于TFNCD算子的三角模糊数多属性群决策[J]. 系统工程与电子技术, 2019, 41(9): 2065-2071. |
[9] | 蒋瑞民, 周军, 郭建国, 赵斌, 仝云. 基于干扰估计的BTT导弹鲁棒方差姿态控制[J]. 系统工程与电子技术, 2019, 41(9): 2080-2086. |
[10] | 李孝鹏, 黄洪钟, 李福秋. 基于PRA的复杂航天多阶段任务系统可靠性分析[J]. 系统工程与电子技术, 2019, 41(9): 2141-2147. |
[11] | 袁培龙, 韩维, 苏析超, 高少辉. 不确定环境下舰载机保障预反应式动态调度优化[J]. 系统工程与电子技术, 2019, 41(6): 1265-1277. |
[12] | 周剑, 张胜东, 王娟, 韩崇, 孙力娟. 基于不确定链路参数的卫星网络路由算法[J]. 系统工程与电子技术, 2019, 41(5): 1143-1148. |
[13] | 张秦, 方志耕, 蔡佳佳, 李亚平, 贾天兵. 基于广义灰色激励因子的多源不确定性指标动态综合评价模型研究[J]. 系统工程与电子技术, 2019, 41(3): 586-593. |
[14] | 王青, 刘雨昂, 刘晨, 董朝阳. 基于扩张状态观测器的变形机翼抗饱和控制[J]. 系统工程与电子技术, 2019, 41(3): 619-625. |
[15] | 周健, 龚春林, 谷良贤, 粟华. 非匹配不确定性条件下的编队分布式协同控制[J]. 系统工程与电子技术, 2019, 41(3): 636-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||