系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 489-496.doi: 10.3969/j.issn.1001-506X.2020.02.31

• 可靠性 • 上一篇    下一篇

基于故障风险标尺的复杂装备健康状态分类模型

张保山1(), 张琳1(), 张搏1(), 鲁娜2(), 魏圣军1()   

  1. 1. 空军工程大学防空反导学院, 陕西 西安 710051
    2. 中国人民解放军93142部队, 四川 成都 610041
  • 收稿日期:2019-05-16 出版日期:2020-02-01 发布日期:2020-01-23
  • 作者简介:张保山(1992-),男,助理工程师,硕士研究生,主要研究方向为故障诊断、PHM管理。E-mail:460096848@qq.com|张琳(1975-),男,教授,博士,主要研究方向为故障诊断、系统工程。E-mail:csdmmsh0@163.com|张搏(1987-),男,讲师,博士,主要研究方向为故障诊断、系统工程。E-mail:zhb8706@163.com|鲁娜(1989-),女,助理工程师,硕士,主要研究方向为装备理论、军事通信频道。E-mail:851252014@qq.com|魏圣军(1983-),男,工程师,硕士研究生,主要研究方向为装备理论、系统工程。E-mail:738284769@qq.com
  • 基金资助:
    中国博士后科学基金(2017M623417)

Equipment health classification model based on failure risk scale

Baoshan ZHANG1(), Lin ZHANG1(), Bo ZHANG1(), Na LU2(), Shengjun WEI1()   

  1. 1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
    2. Unit 93142 of the PLA, Chengdu 610041, China
  • Received:2019-05-16 Online:2020-02-01 Published:2020-01-23
  • Supported by:
    中国博士后科学基金(2017M623417)

摘要:

针对复杂装备故障呈现出多重性、相关性及模糊性的特点,本文分析了装备健康状态演化规律,利用自适应模糊神经网络、故障模式、影响及危害性分析构建故障风险标尺,实现了对复杂装备故障风险程度的定量化描述及装备健康状态的分类。通过实验分析,本文提出的模型相比于传统的故障预测以及故障风险程度定量方法具有显著优势,实现了对装备从设计生产、部署使用以及退役报废全寿命周期的动态反馈,对提高复杂装备综合保障能力具有重要意义。

关键词: 双标签模糊神经网络, 故障预测, 装备健康状态, 故障风险标尺

Abstract:

In view of the complex equipment fault with presents the characteristics of multiplicity, correlation and fuzziness, this paper analyzes the evolution law of the equipment health state, constructs the fault risk scale by using the adaptive fuzzy neural network and failure mode, effects and criticality analysis, and realizes the quantitative description of the fault risk degree of complex equipment state equipment health classification. Experimentally, the model proposed in this paper has significant advantages over the traditional fault prediction and quantitative method of fault risk degree, and realizes the dynamic feedback of the whole life cycle equipment from design, production, deployment and use to retirement, which is of great significance for improving the comprehensive support ability of complex equipment.

Key words: double label fuzzy neural network, failure prediction, equipment health, failure risk scale (FRS)

中图分类号: