系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 489-496.doi: 10.3969/j.issn.1001-506X.2020.02.31
张保山1(), 张琳1(), 张搏1(), 鲁娜2(), 魏圣军1()
收稿日期:
2019-05-16
出版日期:
2020-02-01
发布日期:
2020-01-23
作者简介:
张保山(1992-),男,助理工程师,硕士研究生,主要研究方向为故障诊断、PHM管理。E-mail:基金资助:
Baoshan ZHANG1(), Lin ZHANG1(), Bo ZHANG1(), Na LU2(), Shengjun WEI1()
Received:
2019-05-16
Online:
2020-02-01
Published:
2020-01-23
Supported by:
摘要:
针对复杂装备故障呈现出多重性、相关性及模糊性的特点,本文分析了装备健康状态演化规律,利用自适应模糊神经网络、故障模式、影响及危害性分析构建故障风险标尺,实现了对复杂装备故障风险程度的定量化描述及装备健康状态的分类。通过实验分析,本文提出的模型相比于传统的故障预测以及故障风险程度定量方法具有显著优势,实现了对装备从设计生产、部署使用以及退役报废全寿命周期的动态反馈,对提高复杂装备综合保障能力具有重要意义。
中图分类号:
张保山, 张琳, 张搏, 鲁娜, 魏圣军. 基于故障风险标尺的复杂装备健康状态分类模型[J]. 系统工程与电子技术, 2020, 42(2): 489-496.
Baoshan ZHANG, Lin ZHANG, Bo ZHANG, Na LU, Shengjun WEI. Equipment health classification model based on failure risk scale[J]. Systems Engineering and Electronics, 2020, 42(2): 489-496.
1 | LUNDTEIGEN M A . Common cause failures in safety-instrumented systems: using field experience from the petroleum industry[J]. Reliability Engineering & System Safety, 2016, 151 (6): 34- 45. |
2 | WANG L, ZHANG X, MIAO Q. Understanding theories and methods on fault diagnosis for multi-fault detection of planetary gears[C]//Proc.of the IEEE Prognostics & System Health Management Conference, 2017: 1-8. |
3 | ZHAO X, XIAO M Q, XIE Y W, et al. A method for predicting aviation equipment failures based on degradation-track similarity[C]// Proc.of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 1472-1477. |
4 | ALASWAD S , XIANG Y . A review on condition-based maintenance optimization models for stochastically deteriorating system[J]. Reliability Engineering and System Safety, 2017, 157 (157): 54- 63. |
5 | AHMAD R , KAMARUDDIN S . An overview of time-based and condition-based maintenance in industrial application[J]. Computers & Industrial Engineering, 2012, 63 (1): 135- 149. |
6 |
MOSALLAM A , MEDJAHER K , ZERHOUNI N . Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27 (5): 1037- 1048.
doi: 10.1007/s10845-014-0933-4 |
7 |
HUANG H Z , WANG H K , LI Y F , et al. Support vector machine based estimation of remaining useful life: current research status and future trends[J]. Journal of Mechanical Science and Technology, 2015, 29 (1): 151- 163.
doi: 10.1007/s12206-014-1222-z |
8 |
ZHAO Y , XIAO F , WANG S . An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network[J]. Energy and Buildings, 2013, 57, 278- 288.
doi: 10.1016/j.enbuild.2012.11.007 |
9 | 谭晓栋, 邱静, 罗建禄, 等. 基于HSGT的装备健康状态评估技术[J]. 振动,测试与诊断, 2017, 37 (5): 886- 891, 1060. |
TAN X D , QIU J , LUO J L , et al. Health state assessment technology of equipment based on health state general test[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37 (5): 886- 891, 1060. | |
10 |
YIN S , DING S X , HAGHANI A , et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22 (9): 1567- 1581.
doi: 10.1016/j.jprocont.2012.06.009 |
11 | RUSSELL E L , CHIANG L H , BRAATZ R D . Data-driven methods for fault detection and diagnosis in chemical processes[M]. London: Springer, 2000: 3- 179. |
12 | 王亮, 吕卫民, 滕克难. 基于测试数据的长期贮存装备实时健康状态评估[J]. 系统工程与电子技术, 2013, 35 (6): 1212- 1217. |
WANG L , LYU W M , TENG K N . Real time health condition assessment of long term storage based on testing data[J]. Systems Engineering and Electronics, 2013, 35 (6): 1212- 1217. | |
13 |
ZHANG K , GONZALEZ R , HUANG B , et al. Expectation-maximization approach to fault diagnosis with missing data[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (2): 1231- 1240.
doi: 10.1109/TIE.2014.2336635 |
14 |
QIU J , TAN X D , LIU G J , et al. Test selection and optimization for PHM based on failure evolution mechanism model[J]. Journal of Systems Engineering and Electronics, 2013, 24 (5): 780- 792.
doi: 10.1109/JSEE.2013.00091 |
15 |
TAHAN M , TSOUTSANIS E , MUHAMMAD M , et al. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198, 122- 144.
doi: 10.1016/j.apenergy.2017.04.048 |
16 |
SONG K Y , CHANG I H , PHAM H . A software reliability model with a Weibull fault detection rate function subject to operating environments[J]. Applied Sciences, 2017, 7 (10): 983.
doi: 10.3390/app7100983 |
17 |
JIANG B , CHOWDHURY F N . Parameter fault detection and estimation of a class of nonlinear systems using observers[J]. Journal of the Franklin Institute, 2005, 342 (7): 725- 736.
doi: 10.1016/j.jfranklin.2005.04.007 |
18 | 周林, 赵杰, 冯广飞. 装备故障预测与健康管理技术[M]. 北京: 国防工业出版社, 2015: 51- 62. |
ZHOU L , ZHAO J , FENG G F . Equipment failure prediction and health management technology[M]. Beijing: National Defense Industry Press, 2015: 51- 62. | |
19 |
RAY P K , MOHANTY S R , KISHOR N . Classification of power quality disturbances due to environmental characteristics in distributed generation system[J]. IEEE Trans.on Sustainable Energy, 2013, 4 (2): 302- 313.
doi: 10.1109/TSTE.2012.2224678 |
20 | AHMADI H, MOOSAVIAN A. Fault diagnosis of journal-bearing of generator using power spectral density and fault probability distribution function[C]//Proc.of the International Conference on Innovative Computing Technology, 2011: 30-36. |
21 |
QIAO J F , ZHOU H B . Modeling of energy consumption and effluent quality using density peaks-based adaptive fuzzy neural network[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5 (5): 968- 976.
doi: 10.1109/JAS.2018.7511168 |
22 |
DIELLOUL I , SARI Z , LATRECHE K . Uncertain fault diagnosis problem using neuro-fuzzy approach and probabilistic model for manufacturing systems[J]. Applied Intelligence, 2018, 48 (9): 3143- 3160.
doi: 10.1007/s10489-017-1132-8 |
23 | 徐永成. 装备保障工程学[M]. 北京: 国防工业出版社, 2013: 59- 67. |
XU Y C . Equipment support engineering[M]. Beijing: National Defense Industry Press, 2013: 59- 67. | |
24 | KUSIAK A , LI W . Estimation of wind speed: a data-driven approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98 (10/11): 559- 567. |
25 | GJB/Z 1391-2016.故障模式、影响及危害性分析指南[S].北京:中国人民解放军总装备部, 2006. |
GJB/Z 1391-2016. Guide to failure mode, effect and criticality analysis[S]. Beijing: PLA General Armaments Department, 2006. | |
26 | LEE B H . Using FMEA models and ontologies to build diagnostic models[M]. Cambridge: Cambridge University Press, 2001. |
27 |
SHAFIEE M . Maintenance strategy selection problem: an MCDM overview[J]. Journal of Quality in Maintenance Engineering, 2015, 21 (4): 378- 402.
doi: 10.1108/JQME-09-2013-0063 |
28 |
YANG S , XIANG D , BRYANT A , et al. Condition monitoring for device reliability in power electronic converters: a review[J]. IEEE Trans.on Power Electronics, 2010, 25 (11): 2734- 2752.
doi: 10.1109/TPEL.2010.2049377 |
29 |
WANG J N , TSAU Y W , OUYANG F Y . Failure mechanism of Ag-4Pd alloy wire bonded on Al-Si metallization under high temperature storage and thermal cycle tests in corrosive environments[J]. Materials Chemistry and Physics, 2018, 218, 147- 153.
doi: 10.1016/j.matchemphys.2018.07.021 |
30 |
CHANG Y W , HU C C , PENG H Y . A new failure mechanism of electromigration by surface diffusion of Sn on Ni and Cu metallization in microbumps[J]. Scientific Reports, 2018, 8 (1): 5935.
doi: 10.1038/s41598-018-23809-1 |
[1] | 蔺瑞管, 王华伟, 车畅畅, 倪晓梅, 熊明兰. 基于LSTM分类器的航空发动机预测性维护模型[J]. 系统工程与电子技术, 2022, 44(3): 1052-1059. |
[2] | 杨博帆, 张琳, 张搏, 宋亚飞, 丁尔启. 动态多模型指数平滑法融合的在线预测方法[J]. 系统工程与电子技术, 2020, 42(9): 2013-2021. |
[3] | 黄魁, 苏春. 基于灰色神经网络组合模型的故障预测[J]. 系统工程与电子技术, 2020, 42(1): 238-244. |
[4] | 侯晓东, 王永攀, 杨江平, 张宇. 基于状态的武器电子装备故障预测研究综述[J]. 系统工程与电子技术, 2018, 40(2): 360-367. |
[5] | 董磊, 阎芳, 王鹏. 基于修正高维云的故障映射模型[J]. 系统工程与电子技术, 2015, 37(2): 354-359. |
[6] | 杜占龙, 李小民, 席雷平, 张金中, 刘新海. 多分类概率极限学习机及其在剩余使用寿命预测中的应用[J]. 系统工程与电子技术, 2015, 37(12): 2777-2784. |
[7] | 王琳, 张赟, 彭文辉, 徐波, 王前程. 基于人工蜂群优化的支持向量回归预测方法[J]. 系统工程与电子技术, 2014, 36(2): 326-330. |
[8] | 赵建忠, 李海军, 叶 文, 董 琪. 基于信息融合和改进UGM(1,1)模型的故障预测[J]. 系统工程与电子技术, 2013, 35(10): 2135-2140. |
[9] | 徐宇亮, 孙际哲, 陈西宏, 王光明. 电子设备健康状态评估与故障预测方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(5): 1068-1072. |
[10] | 范庚, 马登武, 邓力, 吕晓峰. 基于灰色相关向量机的故障预测模型[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 424-428. |
[11] | 李波, 赵洁, 郭晋. 设备故障评估新指标及基于ARMA的预测系统[J]. Journal of Systems Engineering and Electronics, 2011, 33(1): 98-0101. |
[12] | 张磊, 李行善, 于劲松, 万九卿. 基于关联向量机回归的故障预测算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(7): 1540-1543. |
[13] | 王昊天,石健. 基于可用度模型的故障预测与健康管理方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2584-2589. |
[14] | 张琪, 胡昌华, 乔玉坤, 蔡艳宁. 基于权值选优粒子滤波器的故障预测算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(1): 221-224. |
[15] | 张琪, 胡昌华, 乔玉坤, 蔡艳宁. 基于权值选优粒子滤波器的故障预测算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 221-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||