系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 445-451.doi: 10.3969/j.issn.1001-506X.2020.02.25

• 通信与网络 • 上一篇    下一篇

基于高维特征选择的跳频电台细微特征识别

李红光(), 郭英(), 眭萍(), 齐子森(), 苏令华()   

  1. 空军工程大学信息与导航学院, 陕西 西安 710077
  • 收稿日期:2019-03-04 出版日期:2020-02-01 发布日期:2020-01-23
  • 作者简介:李红光(1986-),男,博士研究生,主要研究方向为信息对抗理论、通信信号处理。E-mail:toumingwings@163.com|郭英(1961-),女,教授,博士研究生导师,博士,主要研究方向为信息对抗理论、通信信号处理。E-mail:yguo163@163.com|眭萍(1991-),女,博士研究生,主要研究方向为通信信号侦察处理。E-mail:ziwuningxin@163.com|齐子森(1982-),男,讲师,博士,主要研究方向为信息对抗理论、阵列信号处理。E-mail:qizisen@163.com|苏令华(1979-),男,讲师,博士,主要研究方向为通信侦察处理、语音信号处理。E-mail:sulinghua79@sina.com
  • 基金资助:
    国家自然科学基金(61601500);全军研究生资助课题(JY2018C169)

Fine feature recognition of frequency hopping radio based on high dimensional feature selection

Hongguang LI(), Ying GUO(), Ping SUI(), Zisen QI(), Linghua SU()   

  1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
  • Received:2019-03-04 Online:2020-02-01 Published:2020-01-23
  • Supported by:
    国家自然科学基金(61601500);全军研究生资助课题(JY2018C169)

摘要:

将高维特征用于跳频电台细微特征个体识别具有很大优势,为了增强对跳频电台的分类识别能力,需要增加特征类型和维数,提高特征集的表征能力,但同时会引入大量冗余特征,导致分类器计算时间过长,分类正确率降低。为了降低高维特征集维数,首先采用相关性快速过滤特征选择算法,删除高维特征集中的不相关冗余特征,得到最优特征集。然后利用经过参数优化的支持向量机(support vector machine, SVM)分类器进行训练分类。实验表明,所提算法能够对高维特征集进行合理的降维,提高了SVM的分类器的分类性能,在保证分类正确率的基础上,降低了运算量,提高了跳频电台细微特征识别的时效性。

关键词: 跳频电台, 细微特征, 特征选择, 支持向量机

Abstract:

The high dimensional feature is used for individual identification of the fine features of the frequency hopping station. In order to enhance the classification and recognition ability of the frequency hopping station, it is usually necessary to increase the feature type and feature dimension of the feature set to improve the representation ability. However, many redundant features are introduced. As a result, the calculation time of the classifier is too long, and the classification correctness rate is lowered. In order to reduce the dimension of high-dimensional feature sets, the feature selection algorithm is firstly used to delete the irrelevant redundant features in the high-dimensional feature set to obtain the optimal feature set. Then, the parameter-optimized support vector machine (SVM) classifier is used for training and classification. Experiments show that the proposed algorithm can reduce the dimensionality of high-dimensional feature sets and improve the classification performance of SVM. On the basis of ensuring the correctness rate of classification, the computational complexity is reduced, and the timeliness of fine feature recognition of frequency hopping stations is improved.

Key words: frequency hopping radio, subtle features, feature selection, support vector machine (SVM)

中图分类号: