1 |
徐启华.信号侦察中的跳频信号识别方法[D].西安,西安电子科技大学, 2005.
|
|
XU Q H. Recognition method for frequency hopping in signal reconnaissance[D]. Xi'an: Xidian University, 2005.
|
2 |
ERIC M , DUKIC M L , OBRADOVIC M . Frequency hopping signal separation by spatio-frequency analysis based on MUSIC method[J]. Spread Spectrum Techniques and Applications, 2000, 66 (1): 78- 82.
|
3 |
王斌, 陈秋华, 王翠柏. 基于聚类的跳频信号分选[J]. 北京邮电大学学报, 2009, 32 (2): 80- 84.
doi: 10.3969/j.issn.1007-5321.2009.02.018
|
|
WANG B , CHEN Q H , WANG C B . Identification of frequency hopping signals based on clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32 (2): 80- 84.
doi: 10.3969/j.issn.1007-5321.2009.02.018
|
4 |
李文龙,梁涛,许金勇.跳频通信中的射频指纹识别[D].南京:解放军理工大学, 2009.
|
|
LI W L, LIANG T, XU J Y. Radio frequency fingerprinting in frequency hopping communication [D]. Nanjing: PLA University of Science & Technology, 2009.
|
5 |
骆振兴, 赵知劲. 基于功放瞬态响应的跳频电台分选方法[J]. 杭州电子科技大学学报, 2009, 29 (1): 29- 32.
doi: 10.3969/j.issn.1001-9146.2009.01.008
|
|
LUO Z X , ZHAO Z J . Individual HF transmitter identification based on transient response of power amplifier[J]. Journal of Hangzhou Dianzi University, 2009, 29 (1): 29- 32.
doi: 10.3969/j.issn.1001-9146.2009.01.008
|
6 |
范虹. 非平稳信号特征提取方法及应用[M]. 科学出版社, 2013.
|
|
FAN H . Non-stationary signal feature extraction and application[M]. Science Press, 2013.
|
7 |
VERGARA J R , ESTÉVEZ P A . A review of feature selection methods based on mutual information[J]. Neural Computing & Applications, 2014, 24 (1): 175- 186.
|
8 |
CHANDRASHEKAR G , SAHIN F . A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40 (1): 16- 28.
|
9 |
HOQUE N , BHATTACHARYYA D K , KALITA J K . MIFS-ND : a mutual information-based feature selection method[J]. Expert Systems with Applications, 2014, 41 (14): 6371- 6385.
doi: 10.1016/j.eswa.2014.04.019
|
10 |
ESTÉVEZ P A , TESMER M , PEREZ C A , et al. Normalized mutual information feature selection[J]. IEEE Trans.on Neural Networks, 2009, 20 (2): 189- 201.
doi: 10.1109/TNN.2008.2005601
|
11 |
YU L , LIU H . Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5 (12): 1205- 1224.
|
12 |
VAPNIK V N . The nature of statistical learning theory, NY Springer[M]. 2000: 25- 314.
|
13 |
SMOLA A, BARTLETT P, SCHÖLKOPF B, et al. Bounds on error expectation for SVM[C]//Proc.of the Advances in Large Margin Classifiers, 2008: 2000-2001.
|
14 |
DING Z, WANG F, ZHOU P. Fetal ECG extraction based on different kernel functions of SVM[C]//Proc.of the International Conference on Computer Research and Development, 2011: 205-208.
|
15 |
ZHANG Q , ZHANG P , LONG G , et al. Online learning from trapezoidal data streams[J]. IEEE Trans.on Knowledge and Data Engineering, 2016, 1- 1.
|
16 |
VINH L T , LEE S , PARK Y T , et al. A novel feature selection method based on normalized mutual information[J]. Applied Intelligence, 2012, 37 (1): 100- 120.
doi: 10.1007/s10489-011-0315-y
|
17 |
LIU Y, DU J.Parameter optimization of the SVM for big data[C]// Proc.of the 8th IEEE International Symposium on Computational Intelligence and Design (ISCID), 2015: 341-344.
|
18 |
FEI Y, MIN H.Simultaneous feature with support vector selection and parameters optimization using GA-based SVM solve the binary classification[C]//Proc.of the IEEE International Conference on Computer Communication & the Internet, 2016: 426-433.
|
19 |
ZHANG J , CHEN X , XIANG Y , et al. Robust network traffic classification[J]. IEEE/ACM Trans.on Networking, 2015, 23 (4): 1257- 1270.
doi: 10.1109/TNET.2014.2320577
|
20 |
XIAO Y , WANG H , XU W . Parameter selection of Gaussian Kernel for one-class SVM[J]. IEEE Trans.on Cybernetics, 2015, 45 (5): 927- 939.
doi: 10.1109/TCYB.2014.2340032
|
21 |
ALAM S. Performance of Alzheimer disease classification based on PCA, linear SVM and multi-Kernel SVM[C]//Proc.of the 8th IEEE International Conference on Ubiquitous and Future Networks, 2016: 987-989.
|
22 |
GRAMA L, TUNS L, RUSU C. On the optimization of SVM Kernel parameters for improving audio classification accuracy[C]// Proc.of the IEEE International Conference on Engineering of Modern Electric Systems, 2017: 224-227.
|
23 |
GABRIEL G S, BELZARENA P. Statistical traffic classification by boosting support vector machines[C]//Proc.of the Latin American Networking Conference, 2012: 9-18.
|
24 |
GUPTA S, SAURAV S, SINGH S, et al. VLSI architecture of exponential block for non-linear SVM classification[C]//Proc.of the IEEE International Conference on Advances in Computing, 2015: 528-532.
|
25 |
YANG Q, FU H, ZHU T.An optimization method for parameters of SVM in network intrusion detection system[C]//Proc.of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016: 136-142.
|
26 |
HUANG Q, MAO J, LIU Y. An improved grid search algorithm of SVR parameters optimization[C]//Proc.of the IEEE International Conference on Communication Technology, 2013: 1022-1026.
|
27 |
MAVROFORAKIS M E , THEODORIDIS S . A geometric approach to support vector machine (SVM) classification[J]. IEEE Trans.on Neural Networks, 2006, 17 (3): 671- 682.
doi: 10.1109/TNN.2006.873281
|
28 |
HESTERMAN J Y , CAUCCI L , KUPINSKI M A , et al. Maximum-likelihood estimation with a contracting-grid search algorithm[J]. IEEE Trans.on Nuclear Science, 2010, 57 (3): 1077- 1084.
doi: 10.1109/TNS.2010.2045898
|
29 |
CZARNOWSKI I , JÄDRZEJOWICZ P . Agent-based RBF network classifier with feature selection in a kernel space[J]. Journal of Cybernetics, 2016, 47 (1/2): 17- 31.
|
30 |
ZHANG S , LI X , MING Z , et al. Learning K for KNN classification[J]. ACM Trans.on Intelligent Systems & Technology, 2017, 8 (3): 43.
|