| 1 | 徐启华.信号侦察中的跳频信号识别方法[D].西安,西安电子科技大学, 2005. | 
																													
																						|  | XU Q H. Recognition method for frequency hopping in signal reconnaissance[D]. Xi'an: Xidian University, 2005. | 
																													
																						| 2 | ERIC M ,  DUKIC M L ,  OBRADOVIC M .  Frequency hopping signal separation by spatio-frequency analysis based on MUSIC method[J]. Spread Spectrum Techniques and Applications, 2000, 66 (1): 78- 82. | 
																													
																						| 3 | 王斌, 陈秋华, 王翠柏.  基于聚类的跳频信号分选[J]. 北京邮电大学学报, 2009, 32 (2): 80- 84. doi: 10.3969/j.issn.1007-5321.2009.02.018
 | 
																													
																						|  | WANG B ,  CHEN Q H ,  WANG C B .  Identification of frequency hopping signals based on clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32 (2): 80- 84. doi: 10.3969/j.issn.1007-5321.2009.02.018
 | 
																													
																						| 4 | 李文龙,梁涛,许金勇.跳频通信中的射频指纹识别[D].南京:解放军理工大学, 2009. | 
																													
																						|  | LI W L, LIANG T, XU J Y. Radio frequency fingerprinting in frequency hopping communication [D]. Nanjing: PLA University of Science & Technology, 2009. | 
																													
																						| 5 | 骆振兴, 赵知劲.  基于功放瞬态响应的跳频电台分选方法[J]. 杭州电子科技大学学报, 2009, 29 (1): 29- 32. doi: 10.3969/j.issn.1001-9146.2009.01.008
 | 
																													
																						|  | LUO Z X ,  ZHAO Z J .  Individual HF transmitter identification based on transient response of power amplifier[J]. Journal of Hangzhou Dianzi University, 2009, 29 (1): 29- 32. doi: 10.3969/j.issn.1001-9146.2009.01.008
 | 
																													
																						| 6 | 范虹.  非平稳信号特征提取方法及应用[M]. 科学出版社, 2013. | 
																													
																						|  | FAN H .  Non-stationary signal feature extraction and application[M]. Science Press, 2013. | 
																													
																						| 7 | VERGARA J R ,  ESTÉVEZ P A .  A review of feature selection methods based on mutual information[J]. Neural Computing & Applications, 2014, 24 (1): 175- 186. | 
																													
																						| 8 | CHANDRASHEKAR G ,  SAHIN F .  A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40 (1): 16- 28. | 
																													
																						| 9 | HOQUE N ,  BHATTACHARYYA D K ,  KALITA J K .  MIFS-ND : a mutual information-based feature selection method[J]. Expert Systems with Applications, 2014, 41 (14): 6371- 6385. doi: 10.1016/j.eswa.2014.04.019
 | 
																													
																						| 10 | ESTÉVEZ P A ,  TESMER M ,  PEREZ C A , et al.  Normalized mutual information feature selection[J]. IEEE Trans.on Neural Networks, 2009, 20 (2): 189- 201. doi: 10.1109/TNN.2008.2005601
 | 
																													
																						| 11 | YU L ,  LIU H .  Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5 (12): 1205- 1224. | 
																													
																						| 12 | VAPNIK V N .  The nature of statistical learning theory, NY Springer[M]. 2000: 25- 314. | 
																													
																						| 13 | SMOLA A, BARTLETT P, SCHÖLKOPF B, et al. Bounds on error expectation for SVM[C]//Proc.of the Advances in Large Margin Classifiers, 2008: 2000-2001. | 
																													
																						| 14 | DING Z, WANG F, ZHOU P. Fetal ECG extraction based on different kernel functions of SVM[C]//Proc.of the International Conference on Computer Research and Development, 2011: 205-208. | 
																													
																						| 15 | ZHANG Q ,  ZHANG P ,  LONG G , et al.  Online learning from trapezoidal data streams[J]. IEEE Trans.on Knowledge and Data Engineering, 2016, 1- 1. | 
																													
																						| 16 | VINH L T ,  LEE S ,  PARK Y T , et al.  A novel feature selection method based on normalized mutual information[J]. Applied Intelligence, 2012, 37 (1): 100- 120. doi: 10.1007/s10489-011-0315-y
 | 
																													
																						| 17 | LIU Y, DU J.Parameter optimization of the SVM for big data[C]// Proc.of the 8th IEEE International Symposium on Computational Intelligence and Design (ISCID), 2015: 341-344. | 
																													
																						| 18 | FEI Y, MIN H.Simultaneous feature with support vector selection and parameters optimization using GA-based SVM solve the binary classification[C]//Proc.of the IEEE International Conference on Computer Communication & the Internet, 2016: 426-433. | 
																													
																						| 19 | ZHANG J ,  CHEN X ,  XIANG Y , et al.  Robust network traffic classification[J]. IEEE/ACM Trans.on Networking, 2015, 23 (4): 1257- 1270. doi: 10.1109/TNET.2014.2320577
 | 
																													
																						| 20 | XIAO Y ,  WANG H ,  XU W .  Parameter selection of Gaussian Kernel for one-class SVM[J]. IEEE Trans.on Cybernetics, 2015, 45 (5): 927- 939. doi: 10.1109/TCYB.2014.2340032
 | 
																													
																						| 21 | ALAM S. Performance of Alzheimer disease classification based on PCA, linear SVM and multi-Kernel SVM[C]//Proc.of the 8th IEEE International Conference on Ubiquitous and Future Networks, 2016: 987-989. | 
																													
																						| 22 | GRAMA L, TUNS L, RUSU C. On the optimization of SVM Kernel parameters for improving audio classification accuracy[C]// Proc.of the IEEE International Conference on Engineering of Modern Electric Systems, 2017: 224-227. | 
																													
																						| 23 | GABRIEL G S, BELZARENA P. Statistical traffic classification by boosting support vector machines[C]//Proc.of the Latin American Networking Conference, 2012: 9-18. | 
																													
																						| 24 | GUPTA S, SAURAV S, SINGH S, et al. VLSI architecture of exponential block for non-linear SVM classification[C]//Proc.of the IEEE International Conference on Advances in Computing, 2015: 528-532. | 
																													
																						| 25 | YANG Q, FU H, ZHU T.An optimization method for parameters of SVM in network intrusion detection system[C]//Proc.of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016: 136-142. | 
																													
																						| 26 | HUANG Q, MAO J, LIU Y. An improved grid search algorithm of SVR parameters optimization[C]//Proc.of the IEEE International Conference on Communication Technology, 2013: 1022-1026. | 
																													
																						| 27 | MAVROFORAKIS M E ,  THEODORIDIS S .  A geometric approach to support vector machine (SVM) classification[J]. IEEE Trans.on Neural Networks, 2006, 17 (3): 671- 682. doi: 10.1109/TNN.2006.873281
 | 
																													
																						| 28 | HESTERMAN J Y ,  CAUCCI L ,  KUPINSKI M A , et al.  Maximum-likelihood estimation with a contracting-grid search algorithm[J]. IEEE Trans.on Nuclear Science, 2010, 57 (3): 1077- 1084. doi: 10.1109/TNS.2010.2045898
 | 
																													
																						| 29 | CZARNOWSKI I ,  JÄDRZEJOWICZ P .  Agent-based RBF network classifier with feature selection in a kernel space[J]. Journal of Cybernetics, 2016, 47 (1/2): 17- 31. | 
																													
																						| 30 | ZHANG S ,  LI X ,  MING Z , et al.  Learning K for KNN classification[J]. ACM Trans.on Intelligent Systems & Technology, 2017, 8 (3): 43. |