1 |
The Department of Defense of USA. Unmanned system integrated roadmap FY2013-2038[R]. Washington DC: U.S. Department of Defense, 2014.
|
2 |
BAXTER J W , HORN G S , LEIVERS D P . Fly-by-agent: controlling a pool of UAVs via a multi-agent system[J]. Knowledge-Based Systems, 2008, 21 (3): 232- 237.
doi: 10.1016/j.knosys.2007.11.005
|
3 |
贾高伟, 侯中喜. 美军有/无人机协同作战研究现状与分析[J]. 国防科技, 2017, 38 (6): 57- 59.
|
|
JIA G W , HOU Z X . The analysis and current situation about the United States military manned/unmanned aerial vehicle[J]. National Defense Science & Technology, 2017, 38 (6): 57- 59.
|
4 |
杜阳, 吴森堂. 飞航导弹编队队形变换控制器设计[J]. 北京航空航天大学学报, 2014, 40 (2): 240- 245.
|
|
DU Y , WU S T . Transformation control for the formation of multiple cruise missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (2): 240- 245.
|
5 |
CONTE G , DURANTI S , MERZ T . Dynamic 3D path following for an autonomous helicopter[J]. IFAC Proceedings Volumes, 2004, 37 (8): 472- 477.
doi: 10.1016/S1474-6670(17)32021-9
|
6 |
YAMASAKI T, ENOMOTO K, TAKANO H, et al. Advanced pure pursuit guidance via sliding mode approach for chase UAV[C]//Proc.of the AIAA Guidance, Navigation, and Control Conference, 2009. DOI: 10.2514/6.2009-6298.
|
7 |
陈霄, 刘忠, 张建强, 等. 基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J]. 北京航空航天大学学报, 2018, 44 (3): 489- 499.
|
|
CHEN X , LIU Z , ZHANG J Q , et al. Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (3): 489- 499.
|
8 |
MU D D , WANG G F , FAN Y S , et al. Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances[J]. Mathematical Problems in Engineering, 2018.
doi: 10.1155/2018/7512606
|
9 |
WANG N , SUN Z , YIN J C , et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6, 14059- 14070.
doi: 10.1109/ACCESS.2018.2797084
|
10 |
TAO L , DONG Z , DU H , et al. Path following control of the underactuated USV based on the improved line-of-sight guidance algorithm[J]. Polish Maritime Research, 2017, 24 (1): 3- 11.
doi: 10.1515/pomr-2017-0001
|
11 |
王怿, 祝小平, 周洲, 等. 3维动态环境下的无人机路径跟踪算法[J]. 机器人, 2014, 36 (1): 83- 91.
|
|
WANG D , ZHU X P , ZHOU Z , et al. UAV path following in 3-D dynamic environment[J]. Robot, 2014, 36 (1): 83- 91.
|
12 |
ESKANDARPOUR A , SHARF I . A constrained error-based MPC for path following of quadrotor with stability analysis[J]. Nonlinear Dynamics, 2019.
|
13 |
ALESSANDRETTI A, AGUIAR A P. A planar path-following model predictive controller for fixed-wing unmanned aerial vehicles[C]//Proc.of the 11th IEEE International Workshop on Robot Motion and Control, 2017. DOI: 10.1109/RoMoCo.2017.8003893.
|
14 |
LIU C G , NEGENBORN R R , CHU X M , et al. Predictive path following based on adaptive line-of-sight for underactuated autonomous surface vessels[J]. Journal of Marine Science and Technology, 2018, 23 (3): 483- 494.
doi: 10.1007/s00773-017-0486-2
|
15 |
KANG Y , HEDRICK J K . Linear tracking for a fixed-wing UAV using nonlinear model predictive control[J]. IEEE Trans.on Control Systems Technology, 2009, 17 (5): 1202- 1210.
doi: 10.1109/TCST.2008.2004878
|
16 |
王保防, 张瑞雷, 李胜, 等. 基于轨迹跟踪车式移动机器人编队控制[J]. 控制与决策, 2015, 30 (1): 176- 180.
|
|
WANG B F , ZHANG R L , LI S , et al. Formation control for car-like mobile robots based on trajectory tracking[J]. Control and Decision, 2015, 30 (1): 176- 180.
|
17 |
MIAO J M , WANG S P , FAN L , et al. Spatial curvilinear path following control of underactuated AUV[J]. Acta Armamentarii, 2017, 38 (9): 1786- 1796.
|
18 |
LIANG X , QU X R , WAN L , et al. Three-dimensional path following of an underactuated AUV based on fuzzy backstepping sliding mode control[J]. International Journal of Fuzzy Systems, 2018, 20 (2): 640- 649.
doi: 10.1007/s40815-017-0386-y
|
19 |
WANG Y C , CHEN W S , ZHANG S X , et al. Command-filtered incremental backstepping controller for small unmanned aerial vehicles[J]. Journal of Guidance Control and Dynamics, 2018, 41 (4): 1- 14.
|
20 |
WANG Y J , WANG X K , ZHAO S L , et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds[J]. Journal of Systems Science and Complexity, 2018, 31 (1): 302- 324.
doi: 10.1007/s11424-018-8006-y
|
21 |
YAO X L , WANG X W , ZHANG L , et al. Model predictive and adaptive neural sliding mode control for three-dimensional path following of autonomous underwater vehicle with input saturation[J]. Neural Computing and Applications, 2019, 3, 1- 15.
|
22 |
陈霄, 刘忠, 罗亚松, 等. 海洋环境下欠驱动无人艇航迹跟踪控制算法[J]. 哈尔滨工业大学学报, 2018, 50 (10): 110- 117.
doi: 10.11918/j.issn.0367-6234.201709067
|
|
CHEN X , LIU Z , LUO Y S , et al. Path tracking control algorithm for the underactuated USV in the marine environment[J]. Journal of Harbin Institute of Technology, 2018, 50 (10): 110- 117.
doi: 10.11918/j.issn.0367-6234.201709067
|
23 |
SPEARS W M , SPEARS D F , HAMANN J C , et al. Distributed physics-based control of swarms of vehicles[J]. Autonomous Robots, 2004, 17 (2/3): 137- 162.
doi: 10.1023/B:AURO.0000033970.96785.f2
|
24 |
KERR W, SPEARS D. Robotic simulation of gases for a surveillance task[C]//Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. DOI: 10.1109/IROS.2005.1545429.
|
25 |
KERR W, SPEARS D, SPEARS W, et al. Two formal gas models for multi-agent sweeping and obstacle avoidance[C]//Proc.of the International Conference on Formal Approaches to Agent-based Systems, 2005: 111-130.
|
26 |
王勋, 张代兵, 沈林成. 一种基于虚拟力的无人机路径跟踪控制方法[J]. 机器人, 2016, 38 (5): 329- 336.
|
|
WANG X , ZHANG D B , SHEN L C . A virtual force based path following approach for unmanned aerial vehicles[J]. Robot, 2016, 38 (5): 329- 336.
|
27 |
WANG X, ZHANG J W, ZHANG D B, et al. A virtual force guidance law for trajectory tracking and path following[C]// Proc.of the International Conference on Intelligent Autonomous Systems, 2016: 417-432.
|
28 |
李腾.有人/无人机协同编队控制技术研究[D].南京:南京航空航天大学, 2017.
|
|
LI T. Cooperative formation control technology for manned/ unmanned aerial vehicles[D]. Nanjing: University of Aeronautics and Astronautics, 2017.
|
29 |
任立敏, 王伟东, 杜志江, 等. 障碍环境下多移动机器人动态优化队形变换[J]. 机器人, 2013, 35 (5): 535- 543.
|
|
REN L M , WANG W D , DU Z J , et al. Dynamic and optimized formation switching for multiple mobile robots in obstacle environments[J]. Robot, 2013, 35 (5): 535- 543.
|
30 |
REN W, ATKINS E M. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation[C]// Proc.of the AAIA Guidance, Navigation, and Control Conference and Exhibit, 2005. DOI: 10.2514/6.2005-6196.
|
31 |
蒋婉玥, 王道波, 王寅, 等. 基于时变向量场的多无人机编队集结控制方法[J]. 控制理论与应用, 2018, 35 (9): 1216- 1228.
|
|
JIANG W Y , WANG D B , WANG Y , et al. A vector field based method for multi-UAV simultaneous arrival[J]. Control Theory & Applications, 2018, 35 (9): 1216- 1228.
|
32 |
魏瑞轩, 吕明海, 茹常剑, 等. 基于DEDMPC的UAV编队重构防碰撞控制[J]. 系统工程与电子技术, 2014, 36 (12): 2473- 2478.
|
|
WEI R X , LYU M H , RU C J , et al. Reconfiguration collision avoidance method for UAV's formation based on DE-DMPC[J]. Systems Engineering and Electronics, 2014, 36 (12): 2473- 2478.
|
33 |
CHANG K , XIA Y , HUANG K . UAV formation control design with obstacle avoidance in dynamic three-dimensional environment[J]. Springer Plus, 2016, 5 (1): 1124- 1139.
doi: 10.1186/s40064-016-2476-y
|