系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 427-433.doi: 10.3969/j.issn.1001-506X.2020.02.23

• 制导、导航与控制 • 上一篇    下一篇

轨道分析解的改进方法及其应用

杨志涛1,2,3(), 刘静1,3(), 刘林3,4,5()   

  1. 1. 中国科学院国家天文台, 北京 100012
    2. 中国科学院大学天文与空间科学学院, 北京 100049
    3. 国家航天局空间碎片监测与应用中心, 北京 100012
    4. 南京大学天文与空间科学学院, 江苏 南京 210093
    5. 南京大学空间环境与航天动力学研究所, 江苏 南京 210093
  • 收稿日期:2019-08-30 出版日期:2020-02-01 发布日期:2020-01-23
  • 作者简介:杨志涛(1986-),男,助理研究员,博士研究生,主要研究方向为航天器轨道力学、近地天体预警及防御。E-mail:ztyang@nao.cas.cn|刘静(1970-),女,研究员,博士,主要研究方向为空间碎片监测与预警技术。E-mail:liujing@nao.cas.cn|刘林(1936-),通信作者,男,教授,博士,主要研究方向为天体力学、航天器轨道力学。E-mail:lliu@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11803052);空间碎片研究专项资助课题(KJSP2016010101);空间碎片研究专项资助课题(KJSP2016020201);空间碎片研究专项资助课题(KJSP2016020301);空间碎片研究专项资助课题(KJSP2016020101)

Improved method of orbit analytical solution and its application

Zhitao YANG1,2,3(), Jing LIU1,3(), Lin LIU3,4,5()   

  1. 1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
    2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Space Debris Observation and Data Application Center, China National Space Administration, Beijing 100012, China
    4. School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
    5. Institute of Space Environment and Astronautics, Nanjing University, Nanjing 210093, China
  • Received:2019-08-30 Online:2020-02-01 Published:2020-01-23
  • Supported by:
    国家自然科学基金(11803052);空间碎片研究专项资助课题(KJSP2016010101);空间碎片研究专项资助课题(KJSP2016020201);空间碎片研究专项资助课题(KJSP2016020301);空间碎片研究专项资助课题(KJSP2016020101)

摘要:

主要介绍一种通过改进各类轨道摄动项的表达形式,以优化计算效率的轨道分析解改进方法。以低地球轨道为例,阐述了轨道分析解改进后的具体算法,并通过数值仿真分析验证了算法的有效性和实用性。算法以第一类无奇点根数作为轨道状态量,采用开普勒轨道根数计算各类摄动力的长期、长周期和短周期项,通过较简单的组合形式计算无奇点根数的对应摄动项,实现在保持分析解精度和消除小偏心率奇点的同时,提高计算效率。仿真结果表明,分析解算法的模型精度在1E-5量级,符合一阶分析解理论精度的预期;同时计算速度达到传统分析解算法的4倍左右,可有效提升空间碎片轨道预报的计算效率,具有较强的工程应用价值。

关键词: 轨道预报, 空间碎片编目, 开普勒根数, 分析解, 计算效率

Abstract:

This paper mainly introduces an improved orbital analysis solution method which can optimize the computational efficiency through improving the expression of various types of orbital perturbation terms. The low-Earth orbit is taken as an example to illustrate the improved algorithm of the orbital analysis solution, and the effectiveness and practicability are analyzed and verified through numerical simulation. The first class of nonsingular orbital elements is used as the state vector, the secular-terms, long-periodic- terms and short-periodic -terms of perturbations are calculated with Keplerian elements firstly, then the corresponding perturbation terms of the first class of nonsingular orbital elements are calculated by a certain combination form. The algorithm achieves the aim of improving computational efficiency while maintaining analytical solution accuracy and eliminating the small eccentricity singularity. The simulation results show that the model accuracy of the analytical solution algorithm is in the order of 1E-5, which accords with the theoretical expectation of the first-order analytical solution's accuracy. At the same time, the orbit prediction speed of the analytical solution algorithm can reach four times of the calculation speed of the traditional analytical solution algorithm, which can effectively improve the computational efficiency of space debris orbit prediction. Thus, the algorithm has strong engineering application values.

Key words: orbit prediction, space debris cataloging, Kepler elements, analytical solution, computational efficiency

中图分类号: