1 |
黄柯棣, 刘宝宏, 黄健, 等. 作战仿真技术综述[J]. 系统仿真学报, 2004, 16 (9): 1887- 1895.
doi: 10.3969/j.issn.1004-731X.2004.09.011
|
|
HUANG K D , LIU B H , HUANG J , et al. A survey of military simulation technologies[J]. Journal of System Simulation, 2004, 16 (9): 1887- 1895.
doi: 10.3969/j.issn.1004-731X.2004.09.011
|
2 |
PANDA M R , DAS P K , DUTTA S , et al. Optimal path planning for mobile robots using oppositional invasive weed optimization[J]. Computational Intelligence, 2018, 34 (4): 1072- 1100.
doi: 10.1111/coin.12166
|
3 |
YU J , RUS D . An effective algorithmic framework for near optimal multi-robot path planning[M]. New York: Springer, 2018: 495- 511.
|
4 |
LIU M . Robotic online path planning on point cloud[J]. IEEE Trans.on Cybernetics, 2017, 46 (5): 1217- 1228.
|
5 |
YAZICI A , KIRLIK G , PARLAKTUNA O , et al. A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints[J]. IEEE Trans.on Cybernetics, 2017, 44 (3): 305- 314.
|
6 |
WHALEY B . Toward a general theory of deception[J]. The Journal of Strategic Studies, 1982, 5 (1): 178- 192.
|
7 |
MARGUERITE L . Paths of recognition[J]. Ecumenical Review, 2017, 69 (1): 15- 21.
doi: 10.1111/erev.12262
|
8 |
FǍNICǍ G . A recognition algorithm for the intersection graphs of directed paths in directed trees[J]. Discrete Mathematics, 1975, 13 (3): 237- 249.
|
9 |
HOLLER D, BEHNKE G, BERCHER P, et al. Plan and goal recognition as HTN planning[C]//Proc.of the 30th IEEE International Conference on Tools with Artificial Intelligence, 2018: 466-473.
|
10 |
STENTZ A. Optimal and efficient path planning for partially-known environments[C]//Proc.of the IEEE International Conference on Robotics & Automation, 1994.DOI: 10.1109/ROBOT.1994.351061.
|
11 |
ROOT P, MOT J D, FERON E. Randomized path planning with deceptive strategies[C]//Proc.of the American Control Conference, 2005.DOI: 10.1109/ACC.2005.1470188.
|
12 |
MASTERS P, SARDINA S. Deceptive path-planning[C]//Proc.of the 26th International Joint Conference on Artificial Intelligence, 2017: 4368-4375.
|
13 |
DIAS, J, AYLETT R, PAIVA A, et al. The great deceivers: virtual agents and believable lies[C]//Proc.of the Annual Meeting of the Cognitive Science Society, 2013: 2189-2194.
|
14 |
HESPANHA J P, ATESKAN Y S, KIZILOCAK H H. Deception in non-cooperative games with partial information[C]//Proc.of the 2nd Darpa-jfacc Symposium on Advances in Enterprise Control, 2000.DOI: 10.5075/epfl-thesis-6643.
|
15 |
SHIM J, ARKIN R C. A taxonomy of robot deception and its benefits in HRI[C]//Proc.of the IEEE International Conference on Systems, Man and Cybernetics, 2013: 2328-2335.
|
16 |
曾云秀.基于非合作博弈与学习理论的CGF对抗意图识别建模方法与应用研究[D].长沙:国防科技大学, 2018.
|
|
ZENG Y X. Research on CGF-oriented adversarial intent recognition modeling method and application based on non-cooperative game and learning theory[D]. Changsha: National University of Defense Technology, 2018.
|
17 |
RAMIREZ M, GEFFNER H. Plan recognition as planning[C]// Proc.of the 21st International Joint Conference on Artificial Intelligence, 2009: 1778-1783.
|
18 |
MASTERS P, SARDINA S. Cost-based goal recognition for path-planning[C]//Proc.of the 16th Conference on Autonomous Agents & Multiagent Systems, 2017: 750-768.
|
19 |
BURMAN E , OKSANEN L . Data assimilation for the heat equation using stabilized finite element methods[J]. Numerische Mathematik, 2018, 139 (3): 505- 528.
doi: 10.1007/s00211-018-0949-3
|
20 |
BOCQUET M , CARRASSI A . Four-dimensional ensemble variational data assimilation and the unstable subspace[J]. Tellus, 2017, 69 (1): 1304504.
doi: 10.1080/16000870.2017.1304504
|
21 |
ZOU X , XIAO Q . Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme[J]. Journal of the Atmospheric Sciences, 2019, 57 (6): 836- 860.
|
22 |
YUMIMOTO K , NAGAO T M , KIKUCHI M , et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite[J]. Geophysical Research Letters, 2016, 43 (11): 5886- 5894.
doi: 10.1002/2016GL069298
|
23 |
FARHAT A, LUNASIN E, TITI E S. A data assimilation algorithm: the paradigm of the 3D Leray-alpha model of turbulence[EB/OL].[2018-05-09].https://www.researchgate.net/publication/313394755_A_data_assimilation_algorithm_the_paradigm_of_the_3D_Leray-alpha_model_of_turbulence.
|
24 |
MERWE R V D, DOUCET A, FREITAS N D, et al. The unscented particle filter[C]//Proc.of the International Conference on Neural Information Processing Systems, 2000: 563-569.
|
25 |
胡士强, 敬忠良. 粒子滤波算法综述[J]. 控制与决策, 2005, 20 (4): 361- 365.
doi: 10.3321/j.issn:1001-0920.2005.04.001
|
|
HU S Q , JING Z L . Overview of particle filter algorithm[J]. Control and Decision, 2005, 20 (4): 361- 365.
doi: 10.3321/j.issn:1001-0920.2005.04.001
|
26 |
VAN TREES H , BELL K . A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[M]. New York: Wiley, 2007.
|
27 |
PÉREZ J M , BERGER J O . A sequential particle filter method for static models[J]. Biometrika, 2002, 89 (3): 539- 551.
|
28 |
ZHOU T R, OUYANG Y N, WANG R, et al. Particle filter based on real-time compressive tracking[C]//Proc.of the International Conference on Audio, Language and Image Processing, 2017.DOI: 10.1109/ICALIP.2016.7846666.
|
29 |
ZHANG T , LIU S , XU C , et al. Correlation particle filter for visual tracking[J]. IEEE Trans.on Image Process, 2018, 27 (99): 2676- 2687.
|
30 |
ALEXANDROS B , DAN C , AJAY J , et al. A stable particle filter for a class of high-dimensional state-space models[J]. Advances in Applied Probability, 2017, 49 (1): 24- 48.
doi: 10.1017/apr.2016.77
|
31 |
CARPENTER J , CLIFFORD P , FEARNHEAD P . Improved particle filter for nonlinear problems[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 146 (1): 2- 7.
|