系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (2): 356-364.doi: 10.3969/j.issn.1001-506X.2020.02.14

• 系统工程 • 上一篇    下一篇

基于Pareto改进VNS-MMAS的定点修理任务多目标动态调度

刘彦1,2(), 陈春良1(), 陈伟龙3(), 郭一鸣1()   

  1. 1. 陆军装甲兵学院装备保障与再制造系, 北京 100072
    2. 军事科学院系统工程研究院, 北京 100141
    3. 中国卫星海上测控部, 江苏 江阴 214431
  • 收稿日期:2019-04-02 出版日期:2020-02-01 发布日期:2020-01-23
  • 作者简介:刘彦(1994-),男,助理研究员,博士,主要研究方向为装备保障。E-mail:lylzzj1994@163.com|陈春良(1963-),男,教授,博士研究生导师,硕士,主要研究方向为装备保障。E-mail:chenchunliang@163.com|陈伟龙(1988-),男,工程师,博士,主要研究方向为装备保障。E-mail:amose_chen@163.com|郭一鸣(1996-),男,硕士研究生,主要研究方向为装备维修保障。E-mail:867706803@qq.com

Multi-objective dynamic scheduling of fixed-point repairing tasksbased on Pareto improved VNS-MMAS

Yan LIU1,2(), Chunliang CHEN1(), Weilong CHEN3(), Yiming GUO1()   

  1. 1. Department of Technical Support Engineering, Academy of Army Armored Force, Beijing 100072, China
    2. Academy of System Engineering, Academy of Military Sciences, Beijing 100141, China
    3. China Satellite Maritime Tracking and Control Department, Jiangyin 214431, China
  • Received:2019-04-02 Online:2020-02-01 Published:2020-01-23

摘要:

针对战时定点修理任务重、修理时间有限、约束复杂的问题,进行了面向定点修理的战时装备维修任务多目标动态调度研究。提出了战时定点修理装备维修任务调度军事问题,考虑修理时间窗、非遍历性等约束,构建了战时装备维修任务多目标动态调度模型。采取分步求解思路处理修理小组分配以及修理任务排序两阶段优化问题,并从状态转移规则、信息素更新规则、先验信息获取3个方面对最大最小蚂蚁系统(max-min ant system, MMAS)算法进行改进,结合变邻域搜索(variable neighborhood search, VNS)算法增强算法的局部搜索能力,设计了基于Pareto改进VNS-MMAS算法实现模型求解,并通过示例仿真验证了模型及算法的科学性与有效性。

关键词: 定点修理, 多目标, 动态调度, 修理时间窗

Abstract:

To deal with the problem of heavy repair tasks, limited repair time and complicated constraints in wartime, the multi-objective dynamic scheduling of the wartime equipment maintenance tasks for fixed-point repairing is studied. The military problem of wartime fixed-point repairing maintenance task scheduling is proposed. Considering the constraints of repair time window and non-traversal, a multi-objective dynamic scheduling model of the wartime equipment maintenance task is constructed. The step-by-step solution is adopted to deal with the two-stage optimization problem of repair team allocation and repair task sorting. The max-min ant system (MMAS) algorithm is improved from three aspects: state transition rule, pheromone update rule and a priori information acquisition. The local search of the variable neighborhood search (VNS) algorithm is combined with the enhanced algorithm. Based on the ability, the model solving algorithm based on Pareto improved VNS-MMAS is designed. Through example simulation and analysis, the rationality and effectiveness of the model and the algorithm are verified.

Key words: fixed-point repairing, multi-objective, dynamic scheduling, repair time window

中图分类号: