1 |
TÖRN A , ŽILINSKAS A . Global optimization[M]. Lecture Notes in Computer Science, Berlin: Springer, 1989: 1- 216.
|
2 |
SALHI S , QUEEN N M . A hybrid algorithm for identifying global and local minima when optimizing functions with many minima[J]. European Journal of Operational Research, 2004, 155 (1): 51- 67.
|
3 |
TSOULOS I G , LAGARIS I E . Minfinder: locating all the local minima of a function[J]. Computer Physics Communications, 2006, 174 (2): 166- 179.
doi: 10.1016/j.cpc.2005.10.001
|
4 |
TSOULOS I G , STAVRAKOUDIS A . On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods[J]. Nonlinear Analysis: Real World Applications, 2010, 11 (4): 2465- 2471.
doi: 10.1016/j.nonrwa.2009.08.003
|
5 |
LAGARIS I E , TSOULOS I G . Stopping rules for box-constrained stochastic global optimization[J]. Applied Mathematics and Computation, 2008, 197 (2): 622- 632.
doi: 10.1016/j.amc.2007.08.001
|
6 |
刘杰, 王宇平. 一类求多变量函数所有局部极小点的算法[J]. 软件学报, 2013, 24 (10): 2267- 2274.
|
|
LIU J , WANG Y P . Algorithm for locating all lcal minima of multidimensional function[J]. Journal of Software, 2013, 24 (10): 2267- 2274.
|
7 |
吴诗辉, 刘晓东, 邵悦, 等. 一种基于神经网络的仿真优化方法[J]. 系统仿真学报, 2018, 30 (1): 36- 44.
|
|
WU S H , LIU X D , SHAO Y , et al. Optimization via simulation based on neural network[J]. Journal of System Simulation, 2018, 30 (1): 36- 44.
|
8 |
吴诗辉, 张发, 李正欣, 等. 基于神经网络的仿真优化算法设计[J]. 系统工程与电子技术, 2019, 41 (6): 1324- 1335.
|
|
WU S H , ZHANG F , LI Z X , et al. Design of algorithm for neural network based optimization via simulation[J]. Systems Engineering and Electronics, 2019, 41 (6): 1324- 1335.
|
9 |
谢红侠, 马晓伟, 陈晓晓, 等. 基于多种群的改进粒子群算法多模态优化[J]. 计算机应用, 2016, 36 (9): 2516- 2520.
|
|
XIE H X , MA X W , CHEN X X , et al. Enhanced multi-species -based particle swarm optimization for multi-modal function[J]. Journal of Computer Applications, 2016, 36 (9): 2516- 2520.
|
10 |
FAN D C, SHENG W G, CHEN S Y. A diverse niche radii niching technique for multimodal function optimization[C]// Proc.of the Chinese Automation Congress (CAC), 2013: 70-74.
|
11 |
陈娟, 徐立鸿. 动态小生境遗传算法在多模函数优化中的应用[J]. 同济大学学报(自然科学版), 2006, 34 (5): 684- 688.
doi: 10.3321/j.issn:0253-374X.2006.05.024
|
|
CHEN J , XU L H . A dynamic niche genetic algorithm for multimodal function optimization[J]. Journal of Tongji University (Natural Science), 2006, 34 (5): 684- 688.
doi: 10.3321/j.issn:0253-374X.2006.05.024
|
12 |
LI Y K , CHEN Y L , ZHONG J H , et al. Niching particle swarm optimization with equilibrium factor for multi-modal optimization[J]. Information Sciences, 2019, 494 (c): 233- 246.
|
13 |
HAGHBAYAN P , NEZAMABADI-POUR H , KAMYAB S . A niche GSA method with nearest neighbor scheme for multimodal optimization[J]. Swarm and Evolutionary Computation, 2017, 35, 78- 92.
doi: 10.1016/j.swevo.2017.03.002
|
14 |
PASSARO A , STARITA A . Particle swarm optimization for multimodal function: a clustering approach[J]. Journal of Artificial Evolution and Application, 2008, (2008): 1- 15.
|
15 |
CHANG W D . Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm[J]. Applied Soft Computing, 2017, 60 (c): 60- 72.
|
16 |
PENG X G , JIN Y C , WANG H D . Multimodal optimization enhanced cooperative coevolution for large-scale optimization[J]. IEEE Trans.on Cybernetics, 2019, 49 (9): 3507- 3520.
doi: 10.1109/TCYB.2018.2846179
|
17 |
王文国, 吴宗月. 一种基于"拥挤度"概念的人工蜂群算法改进[J]. 通信技术, 2016, 49 (7): 867- 871.
doi: 10.3969/j.issn.1002-0802.2016.07.014
|
|
WANG W G , WU Z Y . Improved artificial bee colony algorithm based on congestion concept[J]. Communications Technology, 2016, 49 (7): 867- 871.
doi: 10.3969/j.issn.1002-0802.2016.07.014
|
18 |
唐莉.人工鱼群行为及其拥挤度因子的研究[D].南京:南京理工大学, 2017.
|
|
TANG L. The research of artificial fish school's behavior and congestion factor[D]. Nanjing: Nanjing University of Science & Technology, 2017.
|
19 |
宋万祯, 雷晓辉, 黄晓敏, 等. 考虑拥挤度的多目标粒子群优化算法在马斯京根参数估计中的应用[J]. 水电能源科学, 2013, 31 (1): 38- 41.
|
|
SONG W Z , LEI X H , HUANG X M , et al. Application of multi-objective particle swarm optimization in Muskingum parameter estimation considering crowding distance[J]. Water Resources and Power, 2013, 31 (1): 38- 41.
|
20 |
郭惠昕, 张龙庭. 混合离散变量优化设计的复合遗传算法[J]. 机械设计, 2005, 22 (3): 9- 11.
|
|
GUO H X , ZHANG L T . Compound genetic algorithm on optimization design of hybrid discrete variables[J]. Journal of Machine Design, 2005, 22 (3): 9- 11.
|
21 |
WEINBERGER E D . Correlated and uncorrelated fitness landscapes and how to tell the difference[J]. Biological Cybernetics, 1990, 63, 325- 326.
doi: 10.1007/BF00202749
|
22 |
陈晔, 李有梅. 约束P-中位问题的适应值曲面分析[J]. 山西大学学报(自然科学版), 2005, 28 (2): 138- 141.
doi: 10.3969/j.issn.0253-2395.2005.02.010
|
|
CHEN Y , LI Y M . Fitness landscape analysis for capactitated P-median problem[J]. Journal of Shanxi University (Natural Science Edition), 2005, 28 (2): 138- 141.
doi: 10.3969/j.issn.0253-2395.2005.02.010
|
23 |
DAVID M . Visualizing fitness landscapes[J]. Evolution, 2011, 65 (6): 1544- 1558.
doi: 10.1111/j.1558-5646.2011.01236.x
|
24 |
JONES T, FORREST S. Fitness distance correlation as a measure difficulty for genetic algorithms[C]//Proc.of the 6th International Conference on Genetic Algorithms, 1995: 184-192.
|
25 |
VANNESCHI L, TOMASSINI M, COLLARD P, et.al. Fitness distance correlation in genetic programming: a constructive counterexample[C]//Proc.of the Congress on Evolutionary Computation, 2004.
|
26 |
吴诗辉, 杨建军, 郭亚坤. 基于模式搜索的导弹目标分配方法研究[J]. 战术导弹技术, 2009, (3): 29- 32.
doi: 10.3969/j.issn.1009-1300.2009.03.007
|
|
WU S H , YANG J J , GUO Y K . Research on the method of missile target assignment based on pattern search[J]. Tactical Missile Technology, 2009, (3): 29- 32.
doi: 10.3969/j.issn.1009-1300.2009.03.007
|