1 |
张锡熊. 21世纪雷达的"四抗"[J]. 雷达科学与技术, 2003, 1 (1): 1- 6.
doi: 10.3969/j.issn.1672-2337.2003.01.001
|
|
ZHANG X X . "Four countering" of radar in the early of the 21st century[J]. Radar Science and Technology, 2003, 1 (1): 1- 6.
doi: 10.3969/j.issn.1672-2337.2003.01.001
|
2 |
李风从, 赵宜楠, 乔晓林. 抑制特定区间距离旁瓣的恒模波形设计方法[J]. 电子与信息学报, 2013, 35 (3): 532- 536.
|
|
LI F C , ZHAO Y N , QIAO X L . Constant modular waveform design method for suppressing range sidelobes in specified intervals[J]. Journal of Electronics & Information Technology, 2013, 35 (3): 532- 536.
|
3 |
郝天铎, 崔琛, 龚阳, 等. 基于序列线性规划的雷达低峰均比估计波形设计[J]. 系统工程与电子技术, 2018, 40 (10): 2223- 2229.
doi: 10.3969/j.issn.1001-506X.2018.10.10
|
|
HAO T D , CUI C , GONG Y , et al. Radar estimation waveform design under low-PAR constraints based on sequence linear programming[J]. Systems Engineering and Electronics, 2018, 40 (10): 2223- 2229.
doi: 10.3969/j.issn.1001-506X.2018.10.10
|
4 |
YANG J , CUI G L , YU X X , et al. Cognitive local ambiguity function shaping with spectral coexistence[J]. IEEE Access, 2018, 6, 50077- 50086.
doi: 10.1109/ACCESS.2018.2868884
|
5 |
AUBRY A , DE MAIO A , JIANG B , et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Trans.on Signal Processing, 2013, 61 (22): 5603- 5619.
doi: 10.1109/TSP.2013.2273885
|
6 |
ARLERY F, KASSAB R, TAN U, et al, Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[C]//Proc.of the IEEE Radar Conference, 2016: 1-6.
|
7 |
CUI G , FU Y , YU X , et al. Local ambiguity function shaping via unimodular sequence design[J]. IEEE Signal Processing Letters, 2017, 24 (7): 977- 981.
doi: 10.1109/LSP.2017.2700396
|
8 |
JING Y , LIANG J , TANG B , et al. Designing unimodular sequence with low peak of sidelobe level of local ambiguity function[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (3): 1393- 1406.
doi: 10.1109/TAES.2018.2870459
|
9 |
SONG J , BABU P , PALOMAR D P . Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Trans.on Signal Processing, 2015, 63 (15): 3998- 4009.
doi: 10.1109/TSP.2015.2425808
|
10 |
WU L , BABU P , PALOMAR D P . Cognitive radar-based sequence design via SINR maximization[J]. IEEE Trans.on Signal Processing, 2017, 65 (3): 779- 793.
doi: 10.1109/TSP.2016.2621723
|
11 |
GOVONI M A , LI H , KOSINSKI J A . Range- Doppler resolution of the linear-FM noise radar waveform[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (1): 658- 664.
doi: 10.1109/TAES.2013.6404130
|
12 |
冯翔.复杂场景下认知雷达探测技术研究[D].哈尔滨:哈尔滨工业大学, 2018.
|
|
FENG X.Research on technologies of cognitive radar probe in complex background[D]. Harbin: Harbin Institute of Technology, 2018.
|
13 |
李秀友, 董云龙, 张林, 等. 一种新的低旁瓣LFM噪声雷达波形设计方法[J]. 电子与信息学报, 2016, 38 (6): 1452- 1459.
|
|
LI X Y , DONG Y L , ZHANG L , et al. A new design method of low sidelobe level LFM noise radar waveform[J]. Journal of Electronics & Information Technology, 2016, 38 (6): 1452- 1459.
|
14 |
FENG X , ZHAO Y N , ZHOU Z Q . Waveform design with low range sidelobe and high Doppler tolerance for cognitive radar[J]. Signal Processing, 2017, 139 (10): 143- 155.
|
15 |
SUN Y , BABU P , PALOMAR D P . Majorization-minimization algorithms in signal processing, communications and machine learning[J]. IEEE Trans.on Signal Processing, 2017, 65 (3): 794- 816.
doi: 10.1109/TSP.2016.2601299
|
16 |
尚进, 赵德华, 位寅生. Pareto最优稀疏频率雷达波形设计[J]. 系统工程与电子技术, 2016, 38 (7): 1538- 1542.
|
|
SHANG J , ZHAO D H , WEI Y S . Pareto-optimal sparse frequency radar waveform design[J]. Systems Engineering and Electronics, 2016, 38 (7): 1538- 1542.
|
17 |
邹鲲, 骆艳卜, 李伟, 等. 频谱拥挤环境中峰均功率比约束的认知雷达发射波形设计[J]. 电子与信息学报, 2018, 40 (7): 1774- 1778.
|
|
ZOU K , LUO Y B , LI W , et al. Cognitive radar waveform design with a peak to average power ration constraint for spectrally dense environments[J]. Journal of Electronics & Information Technology, 2018, 40 (7): 1774- 1778.
|