摘要:
针对现有的分层卷积特征跟踪算法在遭遇多种复杂环境时会发生跟踪失败的问题,提出一种空间注意机制下的自适应目标跟踪算法。在跟踪的过程中,根据当前帧的颜色直方图基于贝叶斯分类器建立空间注意机制,在提取VGGNet19中多层卷积特征后分别与空间注意图进行融合,从而构建稳健的目标表观模型。之后利用学习到的相关滤波器得到各响应值,通过加权求和准则求出最终响应,同时利用帧差法调整学习速率,最终实现自适应的目标跟踪。实验结果表明,所提算法在大多数复杂环境下的跟踪准确度和鲁棒性均优于现有的跟踪算法。
谢瑜, 陈莹. 空间注意机制下的自适应目标跟踪[J]. 系统工程与电子技术, 2019, 41(9): 1945-1954.
XIE Yu, CHEN Ying. Adaptive object tracking based on spatial attention mechanism[J]. Systems Engineering and Electronics, 2019, 41(9): 1945-1954.