系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (7): 1658-1664.doi: 10.3969/j.issn.1001-506X.2019.07.30

• 可靠性 • 上一篇    下一篇

考虑测量误差和随机效应的设备剩余寿命预测#br#

蔡忠义1, 陈云翔1, 郭建胜1, 王泽洲1, 邓林2   

  1. 1. 空军工程大学装备管理与无人机工程学院, 陕西 西安 710051;
    2. 中国电子科技集团公司第29研究所, 四川 成都 610036
  • 出版日期:2019-06-28 发布日期:2019-07-09

Remaining lifetime prediction for device with measurement error and random effect

CAI Zhongyi1, CHEN Yunxiang1, GUO Jiansheng1, WANG Zezhou1, Deng Lin2#br#

#br#
  

  1. 1. Equipment Management & UAV Engineering College, Air Force Engineering University, Xi’an 710051, China;
    2. The 29th Research Institute, China Electronics Technology Group Corporation, Chengdu 610036, China
  • Online:2019-06-28 Published:2019-07-09

摘要: 针对非线性退化设备的剩余寿命预测问题,尚未系统研究考虑测量误差和随机效应的退化建模、先验参数估计及相应的剩余寿命预测方法。首先建立考虑测量误差和随机效应的非线性Wiener退化模型;利用同类设备历史监测数据,基于期望最大化算法估计出退化模型中固定系数和随机系数先验分布;采用状态空间模型描述目标设备当前监测状态,基于Kalman滤波算法迭代估计出随机系数后验分布和当前真实退化状态;利用全概率公式,推导出考虑隐含状态估计不确定性的设备剩余寿命的概率密度函数;仿真实例分析表明,所提方法较现有方法在参数估计误差和剩余寿命预测精度上具有一定优势。

关键词: 剩余寿命预测, 非线性退化模型, 测量误差, 随机效应

Abstract: For the problem of remaining life (RL) prediction of the nonlinear degradation device, existing methods have not systematically studied the degradation modeling with measurement error and random effect, the priori parameter estimation, and the corresponding RL prediction method. A nonlinear Wiener degradation model is built considering measurement error and random effect. By using historical condition monitoring (CM) data of similar device, the expectation maximum algorithm is applied to obtain the estimates of the fixed coefficient and the priori distribution of the random coefficients in the degradation model. The state space model is used to describe the current CM state of the target device. The Kalman filter algorithm is applied to iteratively obtain the posterior distribution of the random coefficients and the current real degradation state. The full probability formula is used to deduce the probability density function of the RL considering the estimation uncertainty of the implicit state. The simulation example analysis shows that this method has advantages over the existing methods in parameter estimation error and RL prediction accuracy.

Key words: remaining life (RL) prediction, nonlinear degradation model, measurement error, random effect