系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (7): 1623-1632.doi: 10.3969/j.issn.1001-506X.2019.07.25

• 制导、导航与控制 • 上一篇    下一篇

基于NTSM的航天器特征点凝视跟踪控制

傅江良1,3, 甘庆波2, 张扬1, 赵柯昕2,3, 袁洪1   

  1. 1. 中国科学院光电研究院, 北京 100094;     2. 中国科学院国家天文台, 北京 100101;    3. 中国科学院大学, 北京 100049
  • 出版日期:2019-06-28 发布日期:2019-07-09

NTSM based kinematically coupled motion control for spacecraft’s feature points staring and tracking

FU Jiangliang1,3, GAN Qingbo2, ZHANG Yang1, ZHAO Kexin2,3, YUAN Hong1   

  1. 1. Academy of Opto Electronics, Chinese Academy of Sciences, Beijing 100094, China;   2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;   3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2019-06-28 Published:2019-07-09

摘要: 针对航天器特征点凝视以及随动跟飞问题,提出了一种建立在目标特征点指向(feature point directing, FPD)坐标系下的相对运动动力学模型,并基于非奇异终端滑模方法(nonsingular terminal sliding mode, NTSM)实现了航天器的相对姿轨耦合控制。首先,以凝视跟踪的目标特征点为原点,跟踪指向轴为主轴,建立了FPD坐标系下的特征点相对运动模型,该模型在控制过程中可以保持特征点相对运动期望状态稳定不变,从而降低了末端约束的处理难度。其次,基于NTSM方法设计了一种有限时间控制律,并对其稳定性和滑模到达时间进行了分析,理论证明了该控制律满足Lyapunov稳定性条件,且系统能在有限时间内迅速收敛到平衡状态。最后,仿真结果表明FPD坐标系下的特征点相对运动模型以及NTSM控制律在求解特征点凝视跟踪问题上具有良好的性能和普适性,研究成果对空间在轨维护、空间操控以及深空小天体悬停着陆等具有一定的理论参考价值。

关键词: 航天器特征点, 特征点指向坐标系, 姿轨耦合动力学, 有限时间控制, 非奇异终端滑模, 凝视跟踪

Abstract: Considering the issue of rapidly tracking and long-term staring between two feature points attached to a chaser spacecraft and a tumbling target respectively, a new model for relative kinematically-coupled motion of two feature points is derived in feature point directing (FPD) frame originated in the target’s feature point, and the nonsingular terminal sliding mode (NTSM) technique is applied both for the relative orbit and the attitude control. Firstly, compared with the traditional point-mass models derived in target’s LVLH frame, the new proposed model not only reduces the computational complexity when determining the relative reference trajectories, but also simplifies the conditions of the terminal constraint. Next, based on the NTSM method, a finite-time controller for coupled translational-rotational dynamics is established. Through theoretical analysis, results show that the proposed controller could satisfy the Lyapunov stability condition and guarantee the tracking errors  to reach zero in finite time. Finally, numerical simulations are given to demonstrate that both orbital and attitude relative motion track the reference trajectories well under the proposed control law. The article also provides a certain reference for future space on-orbit maintenance, manipulation and asteroid hovering and landing in deep space.


Key words: spacecraft feature point, feature point directing (FPD) frame, translation-rotation coupling, finite-time control, nonsingular terminal sliding mode (NTSM), staring and tracking