系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (7): 1496-1503.doi: 10.3969/j.issn.1001-506X.2019.07.09
邵宁远1, 邹焕新1, 陈诚1, 李美霖1, 秦先祥2
SHAO Ningyuan1, ZOU Huanxin1, CHEN Cheng1, LI Meilin1, QIN Xianxiang2
摘要: 针对面向对象的合成孔径雷达(synthetic aperture radar, SAR)图像变化检测中存在的多时相图像边界和空间对应关系不一致的问题,提出了一种面向变化检测的SAR图像超像素协同分割算法。首先,分别计算两幅不同时相SAR图像中两个像素点之间的强度相似度,并进行加权组合得到新的像素强度相似度。其次,对两幅不同时相的SAR图像及其对数比值图分别进行边缘提取,以同一像素位置的最大边缘值构造二值边缘图。最后,以融合了像素强度、空间距离和边缘信息的相似度代替CIELAB彩色空间相似度,利用改进简单线性迭代聚类算法对多时相SAR图像进行超像素分割,得到边界准确、空间对应的协同分割结果。基于一组仿真和一组实测多时相SAR图像的协同分割实验结果表明,该方法的边缘贴合率、欠分割误差和可达分割准确率均优于其他4种经典方法。