系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (4): 780-786.doi: 10.3969/j.issn.1001-506X.2019.04.12

• 传感器与信号处理 • 上一篇    下一篇

浮空式角反射体RCS统计特征及识别模型研究

张俊1, 胡生亮1, 杨庆2, 范学满3   

  1. 1. 海军工程大学兵器工程学院, 湖北 武汉 430033;   2. 南部战区海军舰艇训练中心,广东 湛江 524000;   3.海军潜艇学院潜艇作战软件与仿真研究所, 山东 青岛 266199
  • 出版日期:2019-03-20 发布日期:2019-03-20

RCS statistical features and recognition model of air floating corner reflector

ZHANG Jun1, HU Shengliang1, YANG Qing2, FAN Xueman3   

  1. 1. College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China;
    2. Naval Ship Training Center, Southern Theater Command, Zhanjiang 524000, China;
    3. Naval Submarine Academy, Submarine Combat Software and Simulation Institute, Qingdao 266199, China
  • Online:2019-03-20 Published:2019-03-20

摘要:

针对浮空式角反射体新型无源干扰器材的末制导雷达目标识别问题,对其雷达截面积统计特征及识别模型进行研究。采用理论推导方式依次构建浮空式角反射体及其阵列雷达截面积模型,利用SolidWorks建模仿真软件和三维电磁场仿真软件,对两型舰艇目标进行三维建模和电磁仿真;考虑到雷达截面积随观测角度变化起伏性较强的特点,通过统计手段提取浮空式角反射体和舰船目标位置特征、散布特征和分布特征中的9个统计特征参数,作为后续目标识别特征;基于深度神经网络构建浮空式角反射体类目标识别模型。结果表明:多个浮空式角反射 体成阵列使用能够在一定程度上改变单个角反射体固有的雷达截面积方向性,同时优化神经网络模型可作为判别浮空式角反射体类假目标的有效手段,在划分训练集和测试集上分类准确度分别为97.4%和94.3%。

Abstract:

As to target recognition of the air floating corner reflector which is a new passive interference devices for the low resolution terminal guidance radar,the radar cross section (RCS) statistical features and recognition model are studied. Through theoretical derivation, the RCS model of the airfloating corner reflector and its array are constructed, and SolidWorks and electromagnetic simulation software are used to model and simulate the two types of warship targets. Considering the characteristics of RCS changing strongly with the observation angle, nine characteristic parameters, including target position, distribution and distribution characteristics are extracted by statistical means as features of followup target recognition. Based on the deep neural network, a target recognition model for the airfloating corner reflector is constructed. The experimental results show that the optimized neural network model can be used as an effective means to discriminate the air floating corner reflector which is a false target. The classification accuracy in the training set and test set is 97.4% and 94.3% respectively.