Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (5): 1068-1072.doi: 10.3969/j.issn.1001-506X.2012.05.38

• 可靠性 • 上一篇    下一篇

电子设备健康状态评估与故障预测方法

徐宇亮, 孙际哲, 陈西宏, 王光明   

  1. 空军工程大学导弹学院, 陕西 三原 713800
  • 出版日期:2012-05-23 发布日期:2010-01-03

Method of health performance evaluation and fault prognostics for electronic equipment

XU Yu-liang, SUN Ji-zhe, CHEN Xi-hong, WANG Guang-ming   

  1. Missile Institute, Air Force Engineering University, Sanyuan 713800, China
  • Online:2012-05-23 Published:2010-01-03

摘要:

针对电子设备的健康性能退化问题,提出一种改进流形学算法与隐半马尔可夫模型(hidden semiMarkov model, HSMM)相结合的电子设备健康评估与故障预测方法。首先,在有监督邻域保持投影(supervised neighborhood preserving projection, SNPP)算法中引入非相关约束并加入核函数形成核有监督非相关邻域保持投影(kernel supervised uncorrelated neighborhood preserving projection, KSUNPP)算法,将其用于原始特征的提取,获得有效的特征集作为HSMM的输入进行训练|其次,建立了电子设备健康评估与故障预测模型,该模型用KullbackLeibler (KL)距离来衡量故障程度,实现设备退化程度的评估,又可根据各状态驻留时间,预测出设备故障发生的时间。最后,将该方法应用于某型导弹电子设备的健康评估与故障预测,验证其有效性。

Abstract:

To deal with the health performance degradation of electronic equipment, a new health evaluation and fault prognostics  method based on improved manifold learning algorithm and hidden semiMarkov model(HSMM) is proposed. Firstly, according  to the supervised neighborhood preserving projection (SNPP) algorithm, a kernel supervised uncorrelated neighborhood  preserving projection (KSUNPP) algorithm is proposed by introducing an uncorrelated constraint and kernel method, and the  improved algorithm is used for feature extraction. Secondly, the health evaluation and fault prognostics model of  electronic equipment is constructed. Then, by calculating Kullback Leibler (KL) distance which can measure the fault  degradation, the model can evaluate the health performance degradation. And according to the dwell time of every  state, it can also predict the time that faults occur. Finally, the proposed method is applied to the health evaluation  and fault prognostics of electronic equipment of a certain type of missile. Experiment results demonstrate that the  method is effective.