系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (12): 2855-2861.doi: 10.3969/j.issn.1001-506X.2018.12.33

• 软件、算法与仿真 • 上一篇    下一篇

改进的主峭度分析算法及其在高光谱图像小目标检测中的应用

孟令博1,2,3, 耿修瑞1,2,3   

  1. 1. 中国科学院空间信息处理与应用系统技术重点实验室, 北京 100190; 2. 中国科学院电子学研究所, 北京 100190; 3.中国科学院大学, 北京 100049
  • 出版日期:2018-11-30 发布日期:2018-11-30

Improved principal kurtosis analysis algorithm and its application in hyperspectral imagery small target detection#br#

MENG Lingbo1,2,3, GENG Xiurui1,2,3   

  1. 1. Key Laboratory of Technology in Geospatial Information Processing and Application System, Beijing 100190, China;
    2. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190,China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2018-11-30 Published:2018-11-30

摘要:

由于高光谱图像维数较高,因而在利用高光谱图像进行目标检测之前会先进行数据降维。主成分分析变换和最大噪声成分变换是高光谱图像处理领域最为经典和常用的两种降维方法。它们以图像的方差和信噪比为指标进行降维,是基于二阶统计信息的方法。小目标由于其本身的特点可能会被经过该类方法降维后舍弃掉,而基于高阶统计特性的主峭度分析算法能够很好的解决这类问题。该方法能够提取基于二阶统计信息进行降维后无法保持的小目标信息,从而有效的检测到小目标。但主峭度分析算法的收敛速度较慢、计算时间较长,因而本文提出了一种改进的主峭度分析算法,改进的主峭度分析算法可以提高算法的收敛速度、减少算法的迭代次数。仿真实验表明,改进的主峭度分析算法能够缩短计算时间,提高算法的收敛速度。

Abstract:

Due to the high dimensionality of hyperspectral images, dimensionality reduction is usually performed before target detection. Principal component analysis and maximum noise components are two of the most classical and commonly used dimensionality reduction methods in hyperspectral image processing. They use image variance and signaltonoise ratio as indices to reduce the dimensionality of hyperspectral images,which are used to measure secondorder statistic information. Therefore, the small target may be discarded after being reduced by this kind of methods due to its characteristics. The principal kurtosis analysis algorithm based on the highorder statistic characteristics of data can solve these problems well. This algorithm can extract the information about small targets which cannot be maintained after dimensionality reduction based on secondorder statistic information. However, the principal kurtosis analysis algorithm has a slow convergence speed. Therefore, an improved principal kurtosis analysis algorithm is proposed. It can improve the convergence speed and reduce the iteration times of principal kurtosis analysis. Simulation results show that the proposed algorithm can shorten the computation time and improve the convergence speed.