系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (12): 2714-2721.doi: 10.3969/j.issn.1001-506X.2018.12.14

• 系统工程 • 上一篇    下一篇

基于即时修复式稀疏A*算法的动态航迹规划

王生印1,2, 龙腾1,2, 王祝1,2, 蔡祺生1,2   

  1. 1. 北京理工大学宇航学院, 北京 100081;
    2. 飞行器动力学与控制教育部重点实验室, 北京 100081
  • 出版日期:2018-11-30 发布日期:2018-11-30

Dynamic path planning using anytime repairing sparse A* algorithm

WANG Shengyin1,2, LONG Teng1,2, WANG Zhu1,2, CAI Qisheng1,2#br#   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China
  • Online:2018-11-30 Published:2018-11-30

摘要: 针对动态环境下无人机航迹规划对时效性、可行性和最优性的需求,将稀疏A*搜索(sparse A* search, SAS)算法嵌入到即时修复式架构,并在航迹迭代改善过程中引入双排序准则、存储空间约束及变步长策略,提出了即时修复式稀疏A*(anytime repairing SAS, AR-SAS)算法。静态环境下蒙特卡罗仿真结果表明AR-SAS算法生成可行航迹与最优航迹的时间都小于标准SAS和分层SAS算法;动态仿真结果表明AR-SAS算法能够快速生成可行航迹,并在规定时间内不断提高航迹最优性,满足动态航迹规划的需求。

Abstract:

To satisfy the requirements of efficiency, feasibility, and optimality of unmanned aerial vehicle path planning in dynamic environment, an anytime repairing sparse A* search (AR-SAS) algorithm is proposed, by incorporating the sparse A* search (SAS) into anytime repairing framework and introducing double criteria ordering, memory bounded and adaptivestep expanding strategies into the process of path optimization. Monte-Carlo simulations in static environment demonstrate that AR-SAS takes less time to generate the feasible path and optimal path compared with standard SAS and hierarchical SAS. Simulation results in dynamic environment show that AR-SAS can satisfy the requirements of dynamic planning to rapidly produce a feasible path and gradually improve the path quality in given time.