Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (5): 1051-1057.doi: 10.3969/j.issn.1001-506X.2012.05.35

• 软件、算法与仿真 • 上一篇    下一篇

一种新的多尺度仿射几何不变量提取方法

黄波1,赵晓晖1,赵继印1,时公涛2,陈涛2   

  1. 1. 吉林大学通信工程学院, 吉林 长春 130012;
    2. 空军装备研究院情报所, 北京 100085
  • 出版日期:2012-05-23 发布日期:2010-01-03

New method for multiscale affine geometric invariant extraction

HUANG Bo1, ZHAO Xiao-hui1, ZHAO Ji-yin1, SHI Gong-tao2, CHEN Tao2   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130012, China;
    2. Information Institute, Equipment Academy of the Air Force, Beijing 100085, China
  • Online:2012-05-23 Published:2010-01-03

摘要:

提出了一种新的多尺度仿射几何不变量提取方法。该方法以自定义的多尺度自卷积变换为起点,结合灰度归一化处理,构建出目标图像的一系列仿射协变形式,进而通过设计一组非线性函数计算每个协变形式的一组扩展质心,由此得到新的多尺度仿射几何不变量。将所得不变量与经典的扩展质心特征、多尺度自卷积相比,由于其仅需一次分割便可构造出任意数量的区域面积比仿射不变特征,且从单个仿射协变形式中即可提取多个不变特征,从而有效减小了特征误差,提高了特征的获取效率。利用典型的“Fish”测试数据库,从计算复杂度、抗噪性、抗遮挡性和图像扩展性等方面验证了所提方法的有效性。

Abstract:

A new method for multi-scale affine geometric invariant extraction is proposed. The method begins with the self defined  multi-scale convolution transformation, combines with gray scale normalization, and builds a series of affine covariant  forms of the object image. After that, a series of extended centroids of each covariant form are calculated through a set  of designed nonlinear functions, and the new multiscale affine geometric invariants are obtained. Compared with the  classical extended centroid features and multiscale autoconvolution, the introduced invariant only needs cutting once  and can construct any number area ratio invariant features. More invariant features can be extracted from a single affine  covariant form. All of these can reduce feature errors effectively and improve the efficiency of the feature attainment.  A typical “fish” test database is adopted to validate the efficiency of the proposed method from the perspective of  computational complexity, noise immunity, anti-blocking and image expansion.