系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (11): 2605-.doi: 10.3969/j.issn.1001-506X.2018.11.31

• 可靠性 • 上一篇    下一篇

基于步进加速退化建模的剩余寿命在线预测

蔡忠义, 郭建胜, 陈云翔, 董骁雄, 项华春   

  1. 空军工程大学装备管理与无人机工程学院, 陕西 西安 710051
  • 出版日期:2018-10-25 发布日期:2018-11-14

Remaining lifetime online prediction based on step-stress accelerated degradation modeling

CAI Zhongyi, GUO Jiansheng, CHEN Yunxiang, DONG Xiaoxiong, XIANG Huachun   

  1. Equipment Management & UAV Engineering College, Air Force Engineering University, Xi’an 710051, China
  • Online:2018-10-25 Published:2018-11-14

摘要:

针对同类产品在步进应力加速退化试验中观测数据,采用非线性Wiener过程,建立了带测量误差的加速退化模型;采用两步极大似然估计法,求解出退化模型中固定系数估计值和随机系数先验值;基于首达时的概率分布,推导出剩余寿命的概率密度函数近似表达式;引入随机系数贝叶斯更新方法,利用目标产品当前观测数据来更新随机系数后验值,实现剩余寿命预测结果在线更新;结合某型激光器仿真实例分析,验证了所建模型的正确性和优势。

Abstract:

Aiming at the observed data of step-stress accelerated degradation test (SSADT) in similar products, a nonlinear Wiener process is used to build an accelerated degradation model with measurement error. Two-step maximum likelihood estimation method is used to obtain the fixed coefficient estimation and random coefficient prior in the degradation model. Based on the probability distribution of the first hitting time (FHT), the approximate expression of the probability density function (PDF) of the remaining life is deduced. By using the current observed data of the target product, the Bayesian updating method with random coefficients is introduced to update the posteriori value of the random coefficient so that the remaining life prediction can be updated online. Combined with a certain laser simulation example, the correctness and advantage of the proposed model are verified.