系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (11): 2547-.doi: 10.3969/j.issn.1001-506X.2018.11.23

• 制导、导航与控制 • 上一篇    下一篇

基于因子图的车载INS/GNSS/OD组合导航算法

高军强, 汤霞清, 张环, 武萌   

  1. 陆军装甲兵学院兵器与控制系, 北京 100072
  • 出版日期:2018-10-25 发布日期:2018-11-14

Vehicle INS/GNSS/OD integrated navigation algorithm based on factor graph

GAO Junqiang, TANG Xiaqing, ZHANG Huan, WU Meng   

  1. Weaponry and Control Engineering Department, Army Academy of Armored Forces, Beijing 100072, China
  • Online:2018-10-25 Published:2018-11-14

摘要:

针对车载多传感器组合导航系统中传感器有效性动态改变,以及传感器存在异步和时延的问题,提出了基于因子图的INS/GNSS/OD组合导航算法。采用因子图方法对惯性导航系统(inertial navigation system,INS)、全球导航卫星系统(global navigation satellite system,GNSS)、里程计(odometer,OD)进行建模,构建了INS/GNSS/OD组合导航系统因子图模型。采用变量消除算法将因子图转化为贝叶斯网络,并通过贝叶斯树的形式实现增量推理,确保了因子图算法的实时性。仿真结果表明,当传感器有效性动态改变,以及传感器存在异步和时延时,基于因子图的组合导航算法能够连续稳定地输出高精度的导航结果,满足了车载INS/GNSS/OD系统的要求。因子图算法具有很强的鲁棒性和灵活性,在处理多传感器信息融合问题中具有较大优势。

Abstract:

Aiming at the dynamical changes of sensor validity, the asynchronization and time delay of sensors in vehicle multi-sensor integrated navigation system, the INS/GNSS/OD integrated navigation algorithm based on factor graph is proposed. The factor graph model of INS/GNSS/OD integrated navigation system is constructed after the inertial navigation system (INS), global navigation satellite system (GNSS) and odometer (OD) are modeled respectively by the factor graph method. To ensure the realtime performance of the factor graph algorithm, the factor graph is transformed into a Bayes net by the variable elimination algorithm, and the Bayes tree is adopted to implement the incremental inference. The simulation results show that, the integrated navigation algorithm based on factor graph can continuously output high precision navigation results, when the sensor validity changes dynamically, the asynchronization and time delay of sensor measurements exist. It satisfies the requirements of vehicle INS/GNSS/OD system. The factor graph algorithm with strong robustness and flexibility has a great advantage in dealing with multi-sensor information fusion.