系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (10): 2166-2172.doi: 10.3969/j.issn.1001-506X.2018.10.02

• 电子技术 • 上一篇    下一篇

处理冲突证据的一致性组合规则

李鸿飞1,2, 王靳然1, 敬忠良1   

  1. 1. 上海交通大学航空航天学院, 上海 200240; 2. 中国人民解放军95174部队, 湖北 武汉 43004
  • 出版日期:2018-09-25 发布日期:2018-10-10

Consensus combination rule to deal with conflicting evidence

LI Hongfei1,2, WANG Jinran1, JING Zhongliang1#br#

#br#
  

  1. 1. School of Astronautics and Aeronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Unit 95174 of the PLA, Wuhan 430040, China
  • Online:2018-09-25 Published:2018-10-10

摘要: 在分布式融合系统中,通信延迟等因素会导致融合节点获得证据的顺序不同,使用传统证据组合规则难以得到一致的组合结果。根据组合规则基本性质可知,当组合规则不满足结合性时,证据顺序的不同会导致组合结果的差异。多数冲突证据组合规则,在解决Dempster组合规则冲突悖论的同时失去了结合性;部分冲突证据组合规则以组合结果不确定性为代价保持了结合性,但结果不确定性严重影响了用户决策。从冲突信度保留再分配的角度出发,使用自由Dezert Smarandache(DSm)模型保留先前冲突信度,基于先前冲突信度及当前证据生成权重,通过权重对先前冲突信度和当前冲突信度再分配完成证据组合。提出方法降低了证据顺序对组合结果的影响,在证据乱序情况下能够保持较好的一致性。数值算例验证了该方法的有效性。

Abstract: In the distributed data fusion system, factors such as communication delay can lead to different order of evidence in fusion nodes. Traditional evidence combination rules are difficult to achieve consensus in this case. According to the basic properties of the combination rules, when the combination rules do not satisfy the associativity, the difference in the order of evidence leads to nonconsensus of the combination results. Most of the conflicting evidence combination rules lose associativity in solving the conflict paradox of the Dempster rule. Some of the conflicting evidence combination rules maintain the associativity at the cost of combination result uncertainty, but the result uncertainty seriously affects user decision. This paper starts from the point of conflicting basic belief assignments (BBA) reserving and redistributing to combine disorder conflicting evidence. Previous conflicting BBA are reserved by the free Dezert Smarandache (DSm) model. The previous conflicting BBA and current evidence are used to generate the weights. Then the previous conflicting BBA and current conflicting BBA are redistributed through the weights. The combination rule can reduce the influence of the evidence order on the combination results, and can maintain a good consensus in the case of disorder conflicting evidence. Numerical examples show the efficiency and rationality of the proposed approach.