摘要:
针对现有量子粒子群优化算法的多参数(≥5)优化问题易收敛到局部最优解、且无法判定优化结果全局性的问题,提出了带全局判据的改进量子粒子群优化算法。在惯性权重自适应调整的量子粒子群优化算法基础上,进行了粒子位置周期性变异,以及随粒子进化速度和聚集度变化的搜索范围变异。依据粒子聚集度大小,建立了判定优化结果全局性的全局收敛判据。以典型标准函数和乘波体外形多参数优化问题为算例,验证了改进算法和全局判据的可靠性。结果表明,改进算法的全局搜索能力明显提高,优化结果真实可靠,全局判据实用性强。
徐珊珊, 金玉华, 张庆兵. 带全局判据的改进量子粒子群优化算法[J]. 系统工程与电子技术, 2018, 40(9): 2131-2137.
XU Shanshan, JIN Yuhua, ZHANG Qingbing. Improved quantum-behaved particle swarm optimization with global criterion[J]. Systems Engineering and Electronics, 2018, 40(9): 2131-2137.