系统工程与电子技术 ›› 2018, Vol. 40 ›› Issue (9): 2131-2137.doi: 10.3969/j.issn.1001-506X.2018.09.33

• 软件、算法与仿真 • 上一篇    下一篇

带全局判据的改进量子粒子群优化算法

徐珊珊, 金玉华, 张庆兵#br#

#br#
  

  1. 中国航天科工防御技术研究院, 北京 100854
  • 出版日期:2018-08-30 发布日期:2018-09-09

Improved quantum-behaved particle swarm optimization with global criterion

XU Shanshan, JIN Yuhua, ZHANG Qingbing   

  1. Defense Technology Academy of China Aerospace Science & Industry Corporation, Beijing 100854
  • Online:2018-08-30 Published:2018-09-09

摘要:

针对现有量子粒子群优化算法的多参数(≥5)优化问题易收敛到局部最优解、且无法判定优化结果全局性的问题,提出了带全局判据的改进量子粒子群优化算法。在惯性权重自适应调整的量子粒子群优化算法基础上,进行了粒子位置周期性变异,以及随粒子进化速度和聚集度变化的搜索范围变异。依据粒子聚集度大小,建立了判定优化结果全局性的全局收敛判据。以典型标准函数和乘波体外形多参数优化问题为算例,验证了改进算法和全局判据的可靠性。结果表明,改进算法的全局搜索能力明显提高,优化结果真实可靠,全局判据实用性强。

Abstract:

The improved quantum-behaved particle swarm optimization (QPSO) with global criterion is presented to improve the convergence at the global-best point of current multi-dimensional (≥5) QPSO, and to judge whether the optimization result is the global-best point or not. Based on QPSO with self-adapting adjustment of the inertia weight, the positions of particles are periodically mutated, and the search performance of the swarm is mutated according to the evolution speed and aggregation degree. Meanwhile, the global criterion is established to judge optimization results by the aggregation degree factor. The algorithms and criterion are tested with benchmark functions and cone-derived waverider configuration optimization problems. The experiments show that the search performance of improved QPSO is significantly improved, and the results are true and reliable. The global criterion is practical and effective.