Journal of Systems Engineering and Electronics ›› 2011, Vol. 33 ›› Issue (9): 2144-2148.doi: 10.3969/j.issn.1001-506X.2011.09.42

• 软件、算法与仿真 • 上一篇    

基于主成分分析与核独立成分分析的降维方法

梁胜杰1, 张志华2, 崔立林3, 钟强晖1
  

  1. 1. 海军工程大学兵器工程系, 湖北 武汉 430033
    2. 海军工程大学应用数学系, 湖北 武汉 430033|
    3. 海军工程大学振动与噪声研究所, 湖北 武汉 430033
  • 出版日期:2011-09-17 发布日期:2010-01-03

Dimensionality reduction method based on PCA and KICA

LIANG Sheng-jie1, ZHANG Zhi-hua2, CUI Li-lin3, ZHONG Qiang-hui1   

  1. 1. Department of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China
    2. Department of Applied Mathematics, Naval University of Engineering, Wuhan 430033, China
    3. Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430033, China
  • Online:2011-09-17 Published:2010-01-03

摘要:

根据主成分分析(principal component analysis, PCA)法的降维去噪技术和核独立成分分析(kernel independent component analysis, KICA)法的盲源分离技术,提出了一种关于两者的融合方法,即PCA-KICA方法。将该方法应用于线性和非线性高维混合信号的降维处理中,以相关系数和Amari误差为标准,同主成分分析与独立成分分析(principal component analysisindependent component analysis, PCA-ICA)融合方法进行比较。仿真结果标明,PCAKICA方法与PCA-ICA方法相比,在处理复杂非线性高维混合信号时效果相当,但在处理线性高维混合信号时的效果较好。

Abstract:

According to the dimensionality reduction technology of principal component analysis (PCA) method and the blind source separation technology of kernel independent component analysis (KICA) method, a combined method, the PCA-KICA method, is presented. It is applied to dealing with some linear and nonlinear multidimensional mixing signal processing. Meanwhile, it is compared with the PCAindependent component  analysis (PCA-ICA) method by correlation coefficient and Amari error. Simulation results  indicate that, compared with the PCA-ICA method, the proposed method achieves a proximate effect when dealing with complicated nonlinear multidimensional mixing signals, but can achieve a better result when dealing with linear multidimensional mixing signals.