系统工程与电子技术

• 电子技术 • 上一篇    下一篇

多模型标签多伯努利机动目标跟踪算法

邱昊, 黄高明, 左炜, 高俊   

  1. 海军工程大学电子工程学院, 湖北 武汉 430033
  • 出版日期:2015-11-25 发布日期:2010-01-03

Multiple model labeled multi-Bernoulli filter for maneuvering target tracking

QIU Hao, HUANG Gao-ming, ZUO Wei, GAO Jun   

  1. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
  • Online:2015-11-25 Published:2010-01-03

摘要:

针对标准标签多伯努利(labeled-multi-Bernoulli, LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model-LMB, MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density, MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli, MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。

Abstract:

For the problem that the standard labeled multi-Bernoulli (LMB) filter only considers the single motion model case, a multiple model LMB (MM-LMB) filter for maneuvering target tracking is proposed. By introducing the jump Markov (JM) system to the LMB method, the extended recursion formulations are presented, and the sequential Monte Carlo implementation of the proposed method is given. Simulations show that the MM-LMB filter can track multiple maneuvering targets effectively, and has higher tracking accuracy than the multiple model probability hypothesis density (MM-PHD) filter and the multiple model cardinality balanced multitarget multiBernoulli (MM-CBMeMBer) filter in complex detection environment. The calculation cost of the proposed method is lower than MM-PHD and MM-CBMeMBer when the targets are not closed, while grows faster than the compared algorithms when the targets gather together.