系统工程与电子技术

• 电子技术 •    下一篇

基于多任务学习方向图可重构稀疏阵列天线设计

李龙军1,2, 王布宏1, 夏春和2, 沈海鸥1   

  1. 1.空军工程大学信息与导航学院, 陕西 西安 710077;
    2.北京航空航天大学计算机学院, 北京 100191
  • 出版日期:2015-11-25 发布日期:2010-01-03

Design of pattern reconfigurable sparse arrays based on multi-task learning

LI Long-jun1,2, WANG Bu-hong1, XIA Chun-he2, SHEN Hai-ou1   

  1. 1. School of Information and Navigation, Air Force Engineering University, Xi’an 710077,China; 2. School of
    Computer Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Online:2015-11-25 Published:2010-01-03

摘要:

方向图可重构天线能够根据实际需要实时改变阵列天线的方向图,稀疏天线阵在满足方向图要求的前提下可以有效降低天线设计的复杂度。提出了一种基于多任务学习的方向图可重构稀疏阵列天线设计方法。将稀疏阵列优化设计及其方向图综合问题转换成为稀疏矩阵的线性回归问题,利用多任务学习能同时对多个相关任务优化学习的特性,建立了多个方向图联合赋形的多任务学习模型。通过迭代收缩阈值的方法,对多任务学习问题进行优化求解,使得阵列天线能够使用更少的阵元实现多个方向图的重构。仿真结果表明,该方法可以生成相同阵列结构的稀布天线阵,并通过动态改变其权值向量,实现多个方向图的精确赋形。

Abstract:

The pattern reconfigurable antenna array can dynamically alter the array pattern in need and the sparse arrays benefit the array design in expense and complexity. A novel method based on multi-task learning is proposed for the optimal design of pattern reconfigurable sparse array antennas in view of the minimum number of elements and pattern matching as perfect as possible. The design of sparse and reconfigurable antenna array is reformulated as an equivalent problem of multi-matrices linear regression, and the iterative shrinkage threshold method for multi-task learning is exploited to achieve the compromise between the array sparseness and pattern matching. Simulation results demonstrate that multi-pattern reconfigurations can be realized with the sparse layout deduced from the proposed method.