谢中华, 马丽红
XIE Zhonghua, MA Lihong
摘要:
噪声环境下图像压缩感知(compressive sensing,CS)重构方法的性能会大幅度下降。在近似消息传递(approximate message passing,AMP)算法的基础上,同时利用结构先验信息和边信息来增强AMP算法对噪声的鲁棒性。利用图像中相似块的低秩特性,在反投影的含噪图像中捕获低秩子空间的结构特征;再将含有确定成分的前期重构图像作为边信息,以实现细节的增强。实验表明,本文算法比原始AMP算法在峰值信噪比(peak signal to noise ratio,PSNR)上平均提高了3.89 dB,且获得更加清晰的重构图像;与仅利用低秩特性的AMP算法相比,引入边信息后本文算法在PSNR上获得了0.27 dB的增益,同时增强了重构图像的细节。