系统工程与电子技术

• 电子技术 • 上一篇    下一篇

基于块剪枝多路径匹配追踪的多信号联合重构

司菁菁, 候肖兰, 程银波   

  1. 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
  • 出版日期:2016-08-25 发布日期:2010-01-03

Joint multi-signal reconstruction based on block pruning multipath matching pursuit

SI Jing-jing, HOU Xiao-lan, CHENG Yin-bo   

  1. School of Information Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • Online:2016-08-25 Published:2010-01-03

摘要:

针对多路径匹配追踪(multipath matching pursuit,MMP)无法利用稀疏信号的结构信息、迭代层数较高时计算复杂度较大等问题,提出了一种适用于重构块稀疏信号的块剪枝多路径匹配追踪算法。该算法以原子块作为路径扩张的节点,在一定迭代层数后引入剪枝操作,极大地降低了数据运算量。进而,针对多观测向量(multiple measurement vector,MMV)问题,提出了MMV块剪枝MMP算法,用以实现无线传感网小范围内多传感器信号的联合重构。实验表明,块剪枝MMP的重构性能优于MMP,MMV块剪枝MMP的联合重构性能优于MMV块A*正交匹配追踪、MMV子空间匹配追踪和MMV正交匹配追踪。

Abstract:

Considering the disadvantages of ignoring signal’s structured sparsity and the high complexity in high iterative layers in multipath matching pursuit (MMP), the block pruning multipath matching pursuit (BPMMP) is proposed to reconstruct the block-sparse signal. In this algorithm, an atomic block serves as a node in the path expansion, and branch pruning operation is introduced after a certain number of iterations. Thus, BPMMP reduces the data processing cost greatly. Moreover, for multiple measurement vector (MMV) problem, BPMMP for MMV (BPMMPMMV) is proposed. It can achieve joint signal reconstruction for multiple sensors within a small range in the wireless sensor network. Experimental results show that BPMMP outperforms MMP on the reconstruction performance, and BPMMPMMV achieves higher joint reconstruction performance than block A* orthogonal matching pursuit for MMV, subspace matching pursuit for MMV and orthogonal matching pursuit for MMV.