系统工程与电子技术

• 软件、算法与仿真 • 上一篇    下一篇

基于极限学习机和boosting多核学习的目标跟踪算法

张东东, 孙锐, 高隽   

  1. (合肥工业大学计算机与信息学院, 安徽 合肥 230009)
  • 出版日期:2017-08-28 发布日期:2010-01-03

Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning

ZHANG Dongdong, SUN Rui, GAO Jun   

  1. (School of Computer and Information, Hefei University of Technology, Hefei 230009, China)
  • Online:2017-08-28 Published:2010-01-03

摘要:

如何构造鲁棒的分类器一直是基于判别式的目标跟踪算法研究的热点,近些年多核学习通过线性组合多个核分类器达到了更好的分类性能,受到了广泛的关注。传统的多核学习需要解复杂的最优化问题,很难直接应用到目标跟踪中,因此提出一种基于boosting学习框架的多核学习算法,使目标跟踪在复杂场景下可以保持跟踪的实时性和准确性。为了进一步减少计算量和提升分类性能,采用极限学习机(extreme learning machine,ELM)作为基分类器,ELM结构简单,训练速度非常快,并且比支持向量机有更好的泛化能力。最后,将本文算法与其他先进的跟踪算法在多个公开视频序列中进行比较,验证了本文算法性能的有效性。

Abstract:

How to construct a robust classifier is always a hot research spot in target tracking based on discriminant. In recent years,multiple kernel learning combining multiple classifier to achieve better classification performance has attract wide attention. Traditional multiple kernel learning cannot be directly used in target tracking because it has a very complicated optimal question. A multiple kernel learning is proposed which is based on boosting framework. It assures target tracking can keep efficient and accurate in complicated scenes. In order to decrease the computation and increase the classify performance, extreme learning machine (ELM) is used as the base classifier. ELM has a very simple structure and rapid training speed. Compared to support vector machine, ELM has a better generalization ability. Finally, the proposed algorithm is compared with other state-of-art tracking algorithms in some challenge videos to verify the effectiveness of the proposed algorithm.