• 软件、算法与仿真 • 上一篇
徐涛1,2, 李永祥1, 吕宗平2
XU Tao1,2, LI Yong-xiang1, Lü Zong-ping2
摘要:
随着民航业的飞速发展,机场噪声污染问题越来越严重,研究航迹聚类对机场噪声预防治理工作具有重要意义。现有航迹聚类算法所采用的航迹点对选取方式,无法实现所选航迹点对在空间上的对应,严重影响聚类效果。针对这一问题,提出一种基于航迹点法向距离的航迹聚类模型。该模型采用航迹点法向距离作为航迹相似性度量方法,有效地解决了因飞机速度差异引起的航迹点对选取不匹配问题。通过K-medoids聚类算法对航迹进行二维和三维聚类,使用Davies Bouldin (DB)指标、Dunn指标对聚类结果进行评价。实验表明,提出的模型能够更好地度量航迹之间的相似性,航迹聚类效果更好,从而验证了该模型的合理性和有效性。