刘斌1, 刘维杰2, 魏艳萍1
LIU Bin1, LIU Wei-jie2, WEI YAN-ing1
1. School of Computer and Information Engineering, Hubei University, Hubei Wuhan 430062, China;
2. Computer School, Wuhan University, Wuhan 430072, China
摘要:
针对经典的奇异值分解(singular value decomposition, SVD)在图像处理中的不足,提出了一种6通道多尺度奇异值分解(multi-scale SVD, MSVD)的构造方法,并将其应用于多聚焦图像融合中。首先,在经典SVD的基础上,利用矩阵分块的方法,给出了一种6通道MSVD的构造方法。其次,对参加融合的多聚焦图像进行6通道MSVD分解,得到高层低频和各层5个方向的高频,对分解的低频子图像采用取平均、高频子图像采用区域能量取大的融合规则进行融合,并进行MSVD逆变换得到融合结果图像。最后,对融合结果图像进行主观分析和客观评价。实验结果表明该方法有好的视觉效果,融合结果图像有较高的清晰度和较丰富的边缘细节信息,且没有方块效应。从客观指标看,该方法有较高的清晰度和空间频率,其清晰度和空间频率比基于离散小波变换、基于提升小波变换、基于曲波变换和基于轮廓波变换的融合方法都高。