系统工程与电子技术

• 系统工程 • 上一篇    下一篇

基于粒子群算法的无人机舰机协同任务规划

马华伟1,2, 朱益民1,2, 胡笑旋1,2   

  1. 1.合肥工业大学管理学院, 安徽 合肥 230009;
    2. 过程优化与智能决策教育部重点实验室, 安徽 合肥 230009
  • 出版日期:2016-06-24 发布日期:2010-01-03

Cooperative task planning for ship and UAVs based on particle swarm optimization algorithm

MA Hua-wei1,2, ZHU Yi-min1,2, HU Xiao-xuan1,2   

  1. 1.School of Management, Hefei University of Technology, Hefei 230009, China; 2. Key Laboratory of Process Optimization and Intelligent Decisionmaking, Ministry of Education, Hefei 230009, China
  • Online:2016-06-24 Published:2010-01-03

摘要:

无人机舰机协同任务规划技术是指充分利用无人机与舰艇的优势互补,协同进行作战任务规划的新技术,它是无人机任务规划问题的研究新热点,对于提升海军海上作战能力具有重要意义。针对该问题提出了相应的数学模型,并利用自适应的粒子群算法(self adaptive particle swarm optimization, APSO)进行了求解,该算法能够自适应调整粒子群的惯性权重,更好的防止粒子群陷入局部最优。实验表明,在给定的实验样本中APSO相对于标准粒子群算法和带有压缩因子的粒子群算法能更有效的求解。

Abstract:

Cooperative task planning for ship and unmanned aerial vehicles (UAVs) (CPSU)is a new technology which can make full use of the complementary advantages between ship and UAVs to make task planning cooperatively. It is a new focus on the UAVs’ task planning problem, and it has great influence on improving the navy combat capability. A mathematical model of CPSU is built, and then a selfadaptive particle swarm optimization (APSO) algorithm is introduced to solve it. The algorithm can self adaptively change the inertia weight, which can avoid the PSO trapping into the local optimum better. The experiment shows that the APSO algorithm solves the problem more effectively than the standard PSO and the PSO with the constrict factor.