张天骄1,2, 李济生2, 李晶2,3, 杨宜康1, 杜卫兵2,3
ZHANG Tian-jiao1,2, LI Ji-sheng2, LI Jing2,3, YANG Yi-kang1, DU Wei-bing2,3
摘要:
天地测控资源一体化调度问题是一个典型的大规模组合优化问题,优化过程极其复杂,采用单一优化机制的传统蚁群算法求解这类问题时,存在求解效率低且求解性能差的缺陷。鉴于此,提出了采用两种不同融合策略的新型遗传蚁群优化方法(genetic ant colony optimization hybrid algorithm, GA-ACO)求解问题。该方法利用遗传算法的快速搜索、群体性能等优势生成初始蚁群信息素分布,提高了蚁群算法由于运行初期信息素更新较慢导致的较低求解效率和后期早熟引起的较差求解质量。仿真结果表明,相比于基本蚁群算法和遗传算法,混合蚁群算法的寻优性能更好,求解效率更高,更适合解决天地测控资源一体化调度问题。