Journal of Systems Engineering and Electronics ›› 2013, Vol. 35 ›› Issue (2): 326-330.doi: 10.3969/j.issn.1001-506X.2013.02.15

• 系统工程 • 上一篇    下一篇

火力分配多目标规划模型的改进MOPSO算法

刘晓1, 刘忠1, 侯文姝2, 许江湖1   

  1. 1.海军工程大学电子工程学院, 湖北 武汉 430033;
    2. 中国人民解放军91919部队, 湖北 黄冈 438000
  • 出版日期:2013-02-08 发布日期:2010-01-03

Improved MOPSO algorithm for multi-objective programming model of weapon target assignment

LIU Xiao1,LIU Zhong1,HOU Wen-shu2,XU Jiang-hu1   

  1. 1.College of Electronics, Naval University of Engineering, Wuhan 430033, China;
    2.Unit 91919 of the PLA, Huanggang 438000, China
  • Online:2013-02-08 Published:2010-01-03

摘要:

提出一种改进的多目标粒子群优化算法(multi-objective particle swarm optimization, MOPSO)算法,通过化解约束条件、修改速度和位置更新等使该算法适于求解火力分配多目标规划模型。最终求解的非劣解集构成Pareto前沿,体现增加火力单元数量对射击效能的影响,决策者可按照意图从中选取最终解。不考虑多目标规划模型中的属性目标,对敌毁伤概率随迭代步数演变与单目标函数相比,收敛性能相同,最大值相近,验证了所提算法的有效性。

Abstract:

An improved multi-objective particle swarm optimization (MOPSO) algorithm is proposed, which adjusts constraint conditions, modifies the velocity and position update formulas for the multi-objective programming model of weapontarget assignment optimization. The algorithm can obtain a non-inferior solution to form the Pareto front, which can reflect the effect of increased firepower unit on firing efficiency. Decisionmakers can find the final solution from the non-inferior subset solution according to their intention. Compared with the single objective function in the iterate evolution, the maximum value of the kill probability to enemy shows the same convergence performance and close maximum result, excluding the factor objective of the multi-objective programming model, which verifies the effectiveness of the MOPSO algorithm.