Journal of Systems Engineering and Electronics

• 制导、导航与控制 • 上一篇    下一篇

降维 CKF 算法及其在SINS 初始对准中的应用

钱华明,葛磊,黄蔚,彭宇   

  1. 哈尔滨工程大学自动化学院,黑龙江 哈尔滨 150001
  • 收稿日期:2012-07-25 修回日期:2012-11-19 出版日期:2013-07-22 发布日期:2013-04-03

Reduced dimension CKF algorithm and its application in SINS initial alignment

QIAN Hua-ming,GE Lei,HUANG Wei,PENG Yu   

  1. College of Automation, Harbin Engineering University, Harbin 150001, China
  • Received:2012-07-25 Revised:2012-11-19 Online:2013-07-22 Published:2013-04-03

摘要:

针对常规容积卡尔曼滤波(cubature Kalman filter, CKF)算法在捷联惯导系统(strapdown inertial navigation system, SINS)大方位失准角初始对准中采样点个数与状态向量维数成正比、计算量较大的问题,提出了降维CKF 算法。与常规CKF 算法相比,该算法只对离散化后的SINS 非线性误差模型中的大方位失准角进行采样,再利用三阶球面-相径容积规则计算后验均值和协方差,从而将采样向量从10 维降低到1 维,采样点数量从20个下降到2 个,减小了计算量。仿真实验结果表明,该算法与常规CKF 算法具有相同的对准精度,计算时间仅为常规CKF 算法的1/3,是一种较为实用的方法。

Abstract:

According to the fact that when conventional cubature Kalman Filter (CKF) is adopted for strapdown inertial navigation system (SINS) initial alignment with large azimuth misalignment, the sampling points are proportion to the dimension of state vector, and calculation amount is large, reduced dimension CKF algorithm is proposed. Comparing with the conventional CKF algorithm, only the large azimuth misalignment angle is sampled in the discreted SINS nonlinear error model, and the third-degree spherical-radial cubature rule is used to calculate the posterior mean and covariance. The new approach reduces the sampling vector from 10 dimension to 1 dimension, and reduces the sampling points from 20 to 2, which reduces calculation amount. The simulation shows that new approach has the same alignment accuracy with conventional CKF algorithm, while the computational time is reduced to 1/3 of conventional CKF algorithm, which proves the practicality of the new approach.