Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (12): 2554-2558.doi: 10.3969/j.issn.1001-506X.2012.12.26

• 制导、导航与控制 • 上一篇    下一篇

基于模糊机会约束SVDD的故障诊断方法

秦亮, 周绍磊, 史贤俊, 张树团   

  1. 海军航空工程学院控制工程系, 山东 烟台 264001
  • 出版日期:2012-12-25 发布日期:2010-01-03

Fault diagnosis approach based on fuzzy chance constrained SVDD

QIN Liang, ZHOU Shao-lei, SHI Xian-jun, ZHANG Shu-tuan   

  1. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Online:2012-12-25 Published:2010-01-03

摘要:

针对使用不确定性数据进行多故障模式诊断问题,以模糊事件的可能性测度为基础,提出一种基于模糊机会约束支持向量数据描述的诊断方法。为有效地求解故障分类模型,提出模糊机会约束规划的对偶规划,根据贯序最小算法 (sequential minimal optimization,SMO)思想提出快速训练算法,利用支持向量数据描述使用一类数据求解分类面的优势,构建多类分类器。数值试验表明,本方法可以有效处理基于不确定数据的故障诊断问题,在故障类别较多的情况,速度有较大提高,具有一定实践意义。

Abstract:

Aiming at the problem of multi-fault pattern recognition for uncertain data, a method based on support vector data description is proposed. The possibility measure is introduced into support vector data description (SVDD) as a constraint condition. First, the programming is transformed into its dual form. Then, a fast training method based on sequential minimal optimization (SMO) is developed to get the result. Finally, a multi-class SVDD model is established based on one-class SVDD. Numeric experiments show that the accuracy and speed of classification are improved, and this method is suitable for practical use.

中图分类号: