系统工程与电子技术

• 电子技术 • 上一篇    下一篇

不确定系统鲁棒稳态白噪声反卷积平滑器

刘文强1,2, 王雪梅1, 邓自立1   

  1. 1. 黑龙江大学电子工程学院, 黑龙江 哈尔滨 150080;
    2. 黑龙江科技大学计算机与信息工程学院, 黑龙江 哈尔滨 150022
  • 出版日期:2015-11-25 发布日期:2010-01-03

Robust steady-state white noise deconvolution smoother for uncertain systems

LIU Wen-qiang1,2, WANG Xue-mei1, DENG Zi-li1   

  1. 1. Electronic Engineering College, Heilongjiang University, Harbin 150080, China; 2. Computer and Information
    Engineering College, Heilongjiang University of Science and Technology, Harbin 150022, China
  • Online:2015-11-25 Published:2010-01-03

摘要:

对于带不确定噪声方差的线性离散时不变随机系统,根据极大极小鲁棒估计原理,基于带噪声方差保守上界的最坏情形保守系统,应用Kalman滤波和最优白噪声估计理论,提出了一种鲁棒稳态白噪声反卷积平滑器。对于所有容许的不确定噪声方差,保证它的实际平滑误差方差阵有一个最小上界。基于Lyapunov方程方法证明了它的鲁棒性和鲁棒精度关系。一个数值仿真例子验证了所提出结果的正确性和有效性。

Abstract:

For the linear discrete time-invariant stochastic system with uncertain noise variances, according to the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, applying Kalman filter and the optimal white noise estimation theory, a robust steady-state white noise deconvolution smoother is presented. Its actual smoothing error variances are guaranteed to have a minimal upper bound for all admissible uncertain noise variances. Its robustness and the robust accuracy relation are proved based on the Lyapunov equation approach. A simulation example is given to verify the correctness and effectiveness of the proposed results.