系统工程与电子技术

• 通信与网络 • 上一篇    下一篇

基于rank自适应的3D MIMO有限反馈传输方案

胡正1, 康绍莉2, 苏昕2   

  1. 1. 北京航空航天大学电子信息工程学院, 北京 100191;
    2. 电信科学技术研究院无线移动通信国家重点实验室, 北京 100191
  • 出版日期:2015-10-27 发布日期:2010-01-03

Limited feedback schemes based rank adaptation for 3D MIMO

HU Zheng1, KANG Shao-li2, SU Xin2   

  1. 1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Wireless Mobile Communications,China Academy of Telecommunications Technology, Beijing 100191, China
  • Online:2015-10-27 Published:2010-01-03

摘要:

大规模多输入多输出 (multiple-input multiple-output,MIMO) 技术能够提高频谱效率和能量效率,被认为是下一代无线通信的关键技术。随着有源天线技术的发展,基站配置二维天线阵列可在三维(three-dimensional,3D)空间控制波束,这使得3D MIMO技术成为一个新的研究热点。在单用户MIMO下,本文提出了两种基于秩(rank)自适应的3D MIMO有限反馈方案。方案I在水平维采用rank自适应,垂直维支持rank 1传输;方案II在垂直维采用rank自适应,水平维支持rank 1传输。在三维城市宏小区和三维城市微小区场景下,采用系统级仿真验证了两种方案的性能。相较于水平维和垂直维都仅支持rank 1的传输方案,两种方案都取得了性能增益,同时方案I优于方案II。

Abstract:

Massive multiple-input multiple-output (MIMO) is a potential technology to improve spectrum efficiency and energy efficiency, and deemed to be a key technology for the next generation of wireless communication. As the active antenna system (AAS) technology develops, the base station equipped with twodimensional (2D) antenna array can control the beams in the three-dimensional (3D) space,which makes 3D MIMO become a research hotspot. In the downlink single-user MIMO (SU-MIMO) system, two limited feedback schemes based on rank adaptation for 3D MIMO are proposed. Scheme I adopts rank adaptation in the horizontal domain and supports rank 1 in the vertical domain. On the contrary, scheme II adopts rank adaptation in the vertical domain and supports rank 1 in the horizontal domain. System-level simulations are conducted to test the performance of the two schemes under the 3D-urban macro (3D-UMa) and 3D-urban micro (3D-UMi) scenarios. Simulation results reveal that, compared with the scheme which only supports rank 1 in both horizontal and vertical domains, the two schemes achieve performance gain. Also, scheme I outperforms scheme II.