Journal of Systems Engineering and Electronics ›› 2013, Vol. 35 ›› Issue (6): 1342-1347.doi: 10.3969/j.issn.1001-506X.2013.06.36
张研1,2, 苏国韶1,3, 燕柳斌1
ZHANG Yan 1,2, SU Guo-shao1,3, YAN Liu-bin1
摘要:
对于适应度函数计算耗时较大的工程优化问题,采用仿生智能优化算法求解时常遇到由于适应度函数评价次数过大而导致计算量过高的瓶颈问题。针对上述问题,提出一种基于粒子群优化(particle swarm optimization, PSO)算法与高斯过程(Gaussian process, GP)机器学习方法的协同优化算法(PSO-GP)。该算法在寻优过程中采用GP近似模型来构建决策变量与适应度函数值之间的映射关系,在PSO全局寻优过程中不断地总结寻优历史经验的基础上,预测可能包含全局最优解的搜索区域,以优化粒子群飞行的方向。多个测试函数的优化结果表明,该算法是可行的,与基本PSO算法相比,在获得全局最优解的前提下,可显著减小寻优过程中的适应度函数评价次数,寻优效率较高,在高计算代价复杂工程优化问题的求解上具有良好的应用前景。