Journal of Systems Engineering and Electronics ›› 2013, Vol. 35 ›› Issue (1): 161-167.doi: 10.3969/j.issn.1001-506X.2013.01.27

• 制导、导航与控制 • 上一篇    下一篇

基于提升小波和递归增量聚类的实时故障诊断方法

杨青1,2, 汤剑桥1, 刘畅1, 刘念1   

  1. 1. 沈阳理工大学信息科学与工程学院, 辽宁 沈阳 110159;
    2. 长春理工大学光电工程学院, 吉林 长春 130022
  • 出版日期:2013-01-23 发布日期:2010-01-03

Real time fault diagnosis approach based on lifting wavelet and recursive incremental clustering

ANG Qing1,2,TANG Jian-qiao1,LIU Chang1,LIU Nian1   

  1. 1. School of Information Science and Engineering,Shenyang Ligong University, Shenyang 110159, China; 2. College of Optical and Electronical Engineering,Changchun University of Science and Technology,Changchun 130022, China
  • Online:2013-01-23 Published:2010-01-03

摘要:

针对复杂时变工业过程实时故障诊断问题,提出了一种基于提升小波( lifting wavelet, LW) 与递归增量聚类(recursive incremental clustering, RICLUSTER)相结合的实时故障诊断方法(lifting wavelet recursive incremental clustering, LW-RICLUSTER)。该方法首先通过LW变换对数据实时去噪,再通过RICLUSTER实时监控。由于采用LW与RICLUSTER相结合的方法,节省存储空间和运算时间的同时提高了诊断精度。实验结果表明,LWRICLUSTER集合方法能有效实现时变过程监控, 在诊断精度、速度和适应性方面,优于传统单一型CLUSTER方法。

Abstract:

An ensemble realtime fault diagnosis method based on lifting wavelet (LW) and recursive incremental clustering(RICLUSTER), called LW-RICLUSTER, is proposed to realize realtime monitoring for complex time varying industrial processes. Firstly, data are denoised by LW transform in real time, then RICLUSTER is used for realtime monitoring. With the ensemble approach, storage space is saved and computing time is shortened, while the precision of diagnostic is increased. Experiment results show that the LW -RICLUSTER algorithm can monitor timevarying process. The LW-RICLUSTER is superior to the traditional single CLUSTER in diagnosis precision, rate and adaptability.