Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (5): 973-976.doi: 10.3969/j.issn.1001-506X.2012.05.21

• 系统工程 • 上一篇    下一篇

基于粒子群优化模糊神经网络的高技术知识创新评价

张海峰1,2, 梁工谦1, 张晶1   

  1. 1. 西北工业大学管理学院, 陕西 西安 710072; 2. 北京航天情报与信息研究所, 北京 100854
  • 出版日期:2012-05-23 发布日期:2010-01-03

Evaluation method of high tech-knowledge innovation based on particle swarm optimization fuzzy neural networks

  • Online:2012-05-23 Published:2010-01-03

摘要:

针对高技术知识创新非线性、不确定性、时变性的特点,建立了评价指标体系|结合粒子群优化算法,提出了一种改进的模糊神经网络评价模型。该模型能够进行多个并行时变模糊神经网络组合算法,这些算法通过进化预置网络的连接权值、阈值和补偿参数,实现网络的学习和精确推理。通过仿真应用,证明了此种模型结构与算法适用性好,便于计算机实现,且全局收敛能力、收敛速度和泛化精度等性能均优于原先的学习算法。

Abstract:

According to the characteristic of nonlinearity,uncertainty,time variation,this paper presents high-tech knowledge  innovation capacity evaluation index system,and puts forward an improved fuzzy neural network evaluation model combined  with particle swarm optimization. This model can combine multiple concurrent time varying fuzzy neural network algorithm  and realize network of learning and accurate reasoning, by  evolution  preset network connection weights, threshold and  compensation parameters with particle swarm optimization.Through simulating application, it has been proved that this  model structure and the algorithm are feasible and facilitate for computer implementation, and get the overall  convergence speed and generalization ability, convergence precision of superior original learning algorithm.