Journal of Systems Engineering and Electronics ›› 2013, Vol. 35 ›› Issue (2): 430-435.doi: 10.3969/j.issn.1001-506X.2013.02.34

• 通信与网络 • 上一篇    下一篇

抗多普勒效应FRFT-PPM水声通信技术

尹禄1, 2, 陈韵1,陈冰2,宋威1, 3,蔡平1   

  1. 1. 哈尔滨工程大学水声技术重点实验室, 黑龙江 哈尔滨 150001;
    2. 海军工程大学电子工程学院, 湖北 武汉 430033;
    3. 中国人民解放军65045部队, 黑龙江 哈尔滨 150001
  • 出版日期:2013-02-08 发布日期:2010-01-03

FRFT-PPM underwater communication technology with anti-Doppler effect

YIN Lu1,2,CHEN Yun1,CHEN Bing2,SONG Wei1,3,CAI Ping1   

  1. 1. Science and Technology on Underwater Acoustic Laboratory, Harbin Engineering University, Harbin 150001, China; 
    2. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China; 
    3. Unit 65045 of the PLA, Harbin 150001, China
  • Online:2013-02-08 Published:2010-01-03

摘要:

针对现有水声通信系统抗干扰性能不佳和易受多普勒效应影响的问题,提出了基于分数阶Fourier变换的脉冲位置调制(fractional Fourier transformpulse position modulation, FRFT-PPM)的水声通信系统方案及分数阶域多普勒效应补偿方法。FRFT-PPM水声通信系统采用线性调频(linear frequency modulation, LFM)信号作为通信载波,借用PPM原理将信息调制到分数阶域脉冲位置中进行传输,具有通信速率可调,最高可达1.6kbit/s,抗噪声干扰能力强的优点。根据LFM信号较大多普勒容限和分数阶Fourier变换尺度变换特性,采用分数阶域分数阶域峰值位置补偿来抑制相对运动产生的多普勒效应。通过大量计算机仿真和湖试试验,验证了FRFT-PPM通信系统及分数阶域多普勒效应补偿算法的有效性与可行性。

Abstract:

Aimming at the problems of poor antijamming performance and easily being influenced by Doppler effect of the underwater acoustic (UWA) communication system, the UWA communication system scheme based on the fractional Fourier transformpulse position modulation(FRFT-PPM) and the Doppler compensation method in fractional domain are proposed. The FRFT-PPM system employs the linear frequency modulation (LFM) signal as carrier signals and translates information modulated by peak position in fractional domain based on PPM principle, which has the advantages of an adjustable communication rate (the maximum rate is up to 1.6 kbit/s) and a good anti-noise disturbance performance. According to large Doppler tolerance of LFM signals and the scale transmission property of FRFT, the peak position compensation in fractional domain is presented to suppress Doppler effect caused by the relative motion of platform. The feasibility and robustness of this system are verified by a large number of computer simulation and lake experiments.