Journal of Systems Engineering and Electronics ›› 2011, Vol. 33 ›› Issue (10): 2327-2330.doi: 10.3969/j.issn.1001-506X.2011.10.36

• 软件、算法与仿真 • 上一篇    下一篇

广义判别正交非负矩阵分解及其应用

刘昶1,2,3, 周激流3, 郎方年1,2   

  1. 1. 成都大学信息科学与技术学院, 四川 成都 610106;
    2. 模式识别与智能信息处理四川省高校重点实验室, 四川 成都 610106;
    3. 四川大学计算机学院, 四川 成都 610065
  • 出版日期:2011-10-15 发布日期:2010-01-03

Generalized discriminant orthogonal non-negative matrix factorization and its applications

LIU Chang1,2,3, ZHOU Ji-liu3, LANG Fang-nian1,2   

  1. 1. College of Information Science and Technology, Chengdu University, Chengdu 610106, China;
    2. Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Province, Chengdu 610106, China;
    3. School of Computer Science, Sichuan University, Chengdu 610065, China
  • Online:2011-10-15 Published:2010-01-03

摘要:

提出了一种广义判别正交非负矩阵分解算法。与传统非负矩阵分解算法不同,该算法对目标函数加入了正交约束,保证了低维特征的非负性;也不同于以往的判别非负矩阵分解算法将判别约束加于低维权重上,该算法将判别约束推广到低维特征中,使得低维特征参与模式识别,进一步提高了识别精度。本文给出了算法的推导过程,并将其应用于人脸验证和人脸表情识别。实验结果表明,该算法提高了低维特征的判别能力,具有更好的性能。

Abstract:

A generalized discriminant orthogonal non-negative matrix factorization algorithm is proposed. Unlike traditional non-negative matrix factorization (NMF) algorithms, this algorithm adds to orthogonal constraint to guarantee the nonnegativity of the low-dimensional features and it is also different from traditional discriminant non-negative matrix factorization algorithms which add discriminant constraints in low-dimensional weights. Because low-dimensional features involve in pattern recognition directly, the algorithm generalizes the discriminant constraints to low-dimensional features and improves the recognition accuracy. The algorithm is derived in detail and it is applied to face verification and facial expression recognition. The experiments indicate that the algorithm enhances the discrimination ability of low-dimensional features and has better performance.